
University of Washington

 Programming Languages
A few bits of history

A (biased, incomplete, selective) collection of impressions

Hal Perkins

Spring 2011

Programming Languages - Spring 2011 1

University of Washington

Some Sources & References

 History of Programming Languages conference proceedings
(1978, 1993, 2007)
 Links to proceedings and papers on the course web

 50 in 50: multimedia presentation by Guy Steele and Richard
Gabriel
 Several versions on the web - links on the course site

 Best 50 min. lecture about PL you’re likely to see (including this one)

 Wikipedia is pretty good on many of these topics

 Various History of Computing journals, web archives, …

Programming Languages - Spring 2011 2

University of Washington

In the beginning…

 1940’s, 1950’s – assembly language
 A step up from programming in octal (base 8)

 First software libraries – sin, cos, sqrt

 Each new computer had its own machine/assembler language
 Computer architecture (family of computers with a common instruction

set) didn’t appear until the IBM 360 series in 1964

 Had to recode everything when you got a new computer

Programming Languages - Spring 2011 3

University of Washington

 1954 FORTRAN – IBM Mathematical
FORmula TRANslating System
 Goal: Design a translator to convert “scientific” source code

into IBM 704 machine code with execution speed comparable
to hand-written code

 IBM 704: Hardware floating-point, index registers, …

 The compiler was the important piece – the language was
made up as the project went along
 Assignment, DO (counting) loops, integer and floating-point values,

subscripted variables (up to 3 dimensions but limited forms for
subscripts, stored in column-major order), sequential I/O for cards,
printing, tapes

 Many constructs inspired by need to exploit IBM 704 instructions

 FORTRAN I released in 1957

 Subroutines and functions appeared in FORTRAN II in 1958
 No recursion until FORTRAN 77

Programming Languages - Spring 2011 4

University of Washington

From the first FORTRAN manual

Programming Languages - Spring 2011 5

University of Washington

Impact

 The FORTRAN I and II compilers were the best optimizing
compilers until IBM 360’s FORTRAN H in 1968-69
 Nobody would have taken it seriously if the code hadn’t been fast

 But almost immediately efficiency didn’t matter – the
advantages of writing relatively portable code quickly were
more important

 FORTRAN compilers appeared for most major systems within
a few years

Programming Languages - Spring 2011 6

University of Washington

1958 LISP

 List Processing language

 Symbolic computation, not numbers

 S-expressions (lists, recursive data)

 Recursion, conditional expressions, λ-expressions (functions),
closures (FUNARG) – e.g. lexical scoping

 eval function that defined the language and served as an
interpreter

 Garbage collection to manage storage

 Clean mathematical semantics

 Original implementation on IBM 704 (cf FORTRAN)

 Major application area: Artificial intelligence

 Programming Languages - Spring 2011 7

University of Washington

ALGOL 60

 “Algol 60 was not only an improvement on its predecessors,
but also on nearly all its successors.”
 C. A. R. “Tony” Hoare

Programming Languages - Spring 2011 8

University of Washington

ALGOL 60

 Developed in 1958-1960

 Attempt to come up with a common language not tied to a single
vendor (e.g., IBM)

 International committee sponsored by ACM

 Primarily a numeric language

 Functions, procedures, assignment, loops, arrays, etc.

 Block structure – compound statements, nested scopes

 Recursive functions and call by value, call-by-name

 But no standardized I/O built in to the language (right idea: put it in
library routines, wrong: a standard set never appeared)

 Reference/publication/hardware representations
 a ← b vs a := b vs punch cards

 Formal syntax (Backus, based on ideas from linguistics)

Programming Languages - Spring 2011 9

University of Washington

Call-by-name & Jensen’s device

Programming Languages - Spring 2011 10

University of Washington

ALGOL 60 Implementations & Impact

 Implementation efforts in Europe and US; available on most
major computers (but often University efforts)

 Many standard techniques pioneered/discovered
 e.g., stack frames for recursive procedures: “Recursive Programming”

by E. W. Dijkstra

 “ALGOL 60 is slow” – reputation compared to FORTRAN
because of mismatch with (hostile?) computer architectures
 Can a language (vs an implementation) be said to be “slow” or “fast”?

 Burroughs 5000 – stack machine designed to run ALGOL
 OS and compilers written in ALGOL

 But FORTRAN arrays were slow – hardware/software mismatch

 FORTRAN had too much of a lead for ALGOL 60 to displace it.
Lack of standard I/O and dialect differences didn’t help.

 Programming Languages - Spring 2011 11

University of Washington

COBOL 60 Common Business Oriented Language

 Goal: come up with a common language to handle business
data processing – sponsored by DoD

 Key technical contribution was attention to data layouts – the
original records (struct, each-of, etc.)
 Particular attention to mapping program data to external storage

layout

 Hierarchical data organization

 Program logic separated from data and environment defs.

 Some hope that English-like statements would make it
possible for “end users” to write programs

 Dominant business programming language into the 90s, and
your paycheck is probably printed by it today

Programming Languages - Spring 2011 12

University of Washington

COBOL 60

Programming Languages - Spring 2011 13

University of Washington

 mid 60s: PL/I – If FORTRAN and COBOL are a
good idea, let’s combine them
 Big idea: combine scientific and business computing in one

language, just like IBM 360 hardware for both

 Led by IBM and IBM user groups

 Variety of data types for numeric and string processing, bits,
COBOL-like string editing, array expressions, records, but…

 Lessons learned about unexpected interactions when
language features are combined

 Rudimentary exception handling (ON-conditions)

 Shipped on IBM mainframes, but implemented by other
manufacturers and fairly wide use in 60s-70s.

 Primary implementation language for MULTICS (Bell Labs,
MIT, GE “information utility” project)

Programming Languages - Spring 2011 14

University of Washington

 Application Languages:
APL

 APL: A Programming Language (Kenneth Iverson, 1961)

 Data objects: arrays and matrices, also significant use in
hardware modeling (hardware = arrays/matrices of bits)

 Operations: Individual operations on array elements, but real
power was in higher-level operators on arrays like map, fold,
reduce, transpose, inner & outer product, etc.

 Elaborate mathematical character set: used a special golf-ball
element for IBM typewriters

 Implementation: interpreter; early implementation was
APL\360, APL2 followed in 70s, 80s

 Descendants still used in financial community (A+)

Programming Languages - Spring 2011 15

University of Washington

Application Languages: SNOBOL

 String processing language developed at Bell Labs in the 60s

 Pattern matching; unusual control structures

Programming Languages - Spring 2011 16

University of Washington

 SIMULA: Object Oriented Programming

 Developed at the Norwegian Computing Center, Oslo, by
Nygaard and Dahl

 Goal was a language that could be used for system
description and simulation

 Started in 1961, SIMULA I in 1964, SIMULA 67

 Layered objects and classes on top of ALGOL 60 (although not
always easy to recognize to modern eyes), virtual functions
(dynamic dispatch)

 Quasi-concurrency – activation stack as a graph; coroutines

Programming Languages - Spring 2011 17

University of Washington

ALGOL 68 – A Successor to ALGOL 60

 Done by an international committee with heavy European
representation

 Very generalized, “orthogonal”

 Complex definition – 2-level grammar (CFG for static
semantics to generate the grammar that generated type-
correct programs)

 Some implementations, some influence, particularly in
Europe, but never widely used in US

 Most important influence may be that it led Wirth to resign
from the ALGOL 68 committee and go off in a different
direction…

Programming Languages - Spring 2011 18

University of Washington

1970s Pascal

 Influences
 Dijkstra’s Structured Programming, and programming methodology in

general (the “software crisis”). Writing programs that are correct and
understandable from first principles.

 Hoare’s Notes on Data Structuring: types as a language concept;
fundamental combining operations: records, sequence, recursive data
structures (typed pointers)

 Goal was to produce a small language suitable for teaching
and developing real systems

 Touchstone language for 20+ years, and dominant teaching
language from late 70’s to at least early 90’s
 But not perfect: limitations in type system, e.g., array bounds were part

of the type, so couldn’t write general matrix multiply; difficult to get at
the bits for very low-level programming; “The Program” vs modules

Programming Languages - Spring 2011 19

University of Washington

Pascal Implementations

 Initial implementation written in Pascal (several thousand
lines), then hand compiled to CDC assembly language
 Fixed a dozen bugs, then recompiled itself to become self hosting

 Pascal-P portable compiler by 1974, written in Pascal
 Compiler generated code for a simple stack machine (p-code)

 Stack machine interpreter supplied in Pascal, but easy to recode in
almost anything else

 Once the interpreter was running, it could be used to run the compiler
and modify it to generate native code for the local machine

 Pascal found on almost every known computer within a couple of years

 Also found its way onto microcomputers for teaching: UCSD Pascal

 Used in commercial systems: Original Mac OS and software
stack written in Pascal (+ core assembly language)

Programming Languages - Spring 2011 20

University of Washington

1973 C (ANSI C in 1983)

 Developed at Bell Labs in early 70s, same timeframe as Pascal

 Ancestry is CPL (Strachy, Cambridge) -> BCPL -> B -> C
 (C is B with byte addressing instead of words)

 Programs are a collection of functions, one of which is “main”

 Unlike Pascal, designed to allow programmer to get close to
the hardware, and no attempt to protect programmer from
himself (“the programmer knows what he’s doing”)

 Primary implementation language for Unix
 Therefore became ubiquitous when Unix became ubiquitous on

microcomputers and early workstations

Programming Languages - Spring 2011 21

University of Washington

Abstract Data Types and Encapsulation

 By the early 70’s modularity emerged as a dominant theme in
language design

 Key ideas:
 Encapsulation / information hiding: systems should be built from

modules connected by narrow interfaces; implementation details
should be private/hidden

 Abstract Data Types: Data abstractions consist of both the data
structures themselves (linked list, array, whatever) and the operations
on them (stack push/pop/top), and these should be packaged together

 Research languages included CLU (Liskov, MIT), Alphard
(Wulf, Shaw, CMU)
 Focus was modules and ADTs, not objects as in Simula

Programming Languages - Spring 2011 22

University of Washington

Late 70’s: Mesa (Xerox PARC)

 Modular programming
 Each module has two or more source files: definition (interface) plus

one or more implementation files

 Strong type checking across module boundaries
 But “unsafe” modules could be used for low-level programming

 Exception handling

 Developed on the Xerox Alto

 Successors included Cedar (added gc among other things)

 Implementation language for Xerox Star – first WYSIWYG
workstations (commercial flop, but then there was the Mac…)

 Strong influence on Modula 2, Ada, Java…

Programming Languages - Spring 2011 23

University of Washington

1980 - Ada

 DoD sponsored language to replace a cacophony of languages
inside DoD with a single, safe language

 Strongly typed, modules (but not objects originally), dynamic
storage management, exception handling, generics

 Explicitly addressed concurrency in the language definition

 Focus on compile-time checks to avoid runtime errors

 Reasonably successful in safety-critical and other DoD
applications, but expensive compilers, etc. Never became the
dominant language for mainstream programming

Programming Languages - Spring 2011 24

University of Washington

Modula and Oberon

 Wirth’s successors to Pascal

 Modular programming

 Modula 2 after Wirth spent a sabbatical year at Xerox PARC
in 1976, then went home and created his own language and
workstation hardware to run it

 Oberon added objects a decade later

 Modula 3 developed by others at DEC SRC late 80’s
 Lots of PARC people; the “next Mesa”?

 Almost became the “next” teaching language, but then the Java
stampede happened

Programming Languages - Spring 2011 25

University of Washington

Smalltalk

 Developed at Xerox PARC in early 70’s, Alan Kay
 First version in 1972; significant revision in 1976

 Smalltalk 80 was the widely released version
 Language + environment, graphics, personal machines, rapid prototyping /

exploratory programming, programming for kids; Dynabook vision
 Lives on as Squeak
 Still used in the financial community for fast prototyping and modeling

 Concepts
 Everything is an object
 Objects are instances of classes
 Computation is objects sending messages to each other

 Build a system that had the right abstractions; the hardware will
eventually catch up

 Implementation: Smalltalk virtual machine – byte code interpreter
 Research implementation at Berkeley on early Sun workstations

 Generational GC (Ungar) among other things

Programming Languages - Spring 2011 26

University of Washington

1987-95: Self

 David Ungar and Randall Smith at Xerox PARC

 Question: If an object-oriented system is all about objects
sending messages to each other, why do you need classes?

 Self is all about objects and messages
 Interactive environment like Smalltalk

 With no classes, create new objects by cloning existing ones

 Implementation technology: To get adequate efficiency
implementation needs to discover commonalities between
objects, inline function calls aggressively, dynamic caches, …
 Key ideas behind today’s Javascript compiler arms race come from the

Self papers from 20 years ago

 Code from Craig Chambers’ PhD thesis under Ungar is said to be
recognizable in Java’s current Hotspot virtual machine

Programming Languages - Spring 2011 27

University of Washington

1980s – C++

 Developed by Stroustrup at Bell Labs

 Initial goal was to build something as expressive as Simula for
simulations, but with the runtime efficiency of C

 First implementation was as a set of C preprocessor macros(!)
 “C with Classes”

 Quickly turned into a real programming language with C as its
(almost completely unmodified) core

 Huge language – many pragmatic decisions, lots of things that
make PL types queasy

 If you read the papers, the big-picture design and vision have
been fairly consistent for 20+ years

Programming Languages - Spring 2011 28

University of Washington

1995 - Java

 Early 90s: Sun decides it wants to sell more SPARC chips by
selling embedded systems development kits
 But need a software development environment to do that

 Considered Smalltalk(!) (too expensive), C++ (too complex)

 Designed Oak language instead – subset of C++ heavily
influenced by Smalltalk, Mesa, others

 Then two non-technical influences: internet, Microsoft
 Internet as a “platform” alternative to Windows/msft domination

 Pointy-headed bosses stampede: Java, Java, Java; web, web, web

 Trademark search: Oak can’t be used – so it’s renamed Java

 Chaos ensues: Java everywhere, interns everywhere to
implement much larger libraries, etc.

Programming Languages - Spring 2011 29

University of Washington

Java technically

 Safe, strong typing, attempts to have no semantic loopholes
 Generics added in Java 1.5, 2004

 Concurrency and garbage collection baked in

 Portable: compiler target is a byte code machine (.class files)
 Compiler output can be interpreted directly (original JVM and current

Hotspot), or compiled to native code (Hotspot)

 .class files contain symbolic information about compiled classes, not
just executable byte codes

 Just-in-time compilers (JIT): monitor code as it runs, identify
frequently executed code, then compile on the fly into native
code; backpatch interpreted code to jump to compiled code
 JIT compiler has all the information available to typical optimizing

compilers (from .class files) and performs standard optimizations

 Performance comparable to C/C++ these days for many things

Programming Languages - Spring 2011 30

University of Washington

C# / Common Language Runtime

 Background - Java
 Microsoft had one of the best Java 1.0/1.1 environments; started adding

“extensions” to standard libraries to make code tie better to Windows

 Sun sues Microsoft for violating “pure Java” contract; Microsoft loses,
never able to get license for Java 1.2 (new collection classes) and later

 Background - DLL Hell
 Problems with incompatible versions of dynamically linked libraries trying

to coexist on the same system for different programs

 Technical (& business) solution: Common Language Runtime and
Java-like language C#, with Windows extensions
 CLR incorporated ideas from a wide selection of the PL community

 Extensions allow for unsafe modules, mixing managed code with older code
that uses old abstractions/runtime structures (COM, DCOM)

 Microsoft Intermediate Language (MSIL) is a lot like Java bytecodes

 One key difference: always compiled to native code before execution

Programming Languages - Spring 2011 31

University of Washington

 Meanwhile, in the Land of LISP…

 LISP was the dominant language in the AI community
throughout the 60’s and 70’s

 By the mid 60’s dialects started to proliferate:
 MacLisp (MIT)

 BBN-LISP

 Interlisp (Xerox PARC)

 Various LISP machines (special-purpose machines)

 Franz Lisp (Berkeley Unix)

 Others…

 1975: Scheme (MIT, Sussman & Steele; Steele’s MS thesis)

 1984: Common LISP – DoD ARPA attempt to mandate a
common dialect (so groups they funded could share code)
 Much petty behavior, hurt feelings, and rivalries along the way

Programming Languages - Spring 2011 32

University of Washington

Functional Programming – ML family

 ML developed in early 1970s at Edinburgh (Milner & others)

 Original use as a language for writing proof tactics for
automatic theorem proving systems

 Major research results in type inference and type systems
(Hindley-Milner algorithm), polymorphism

 Modern dialects
 SML (Standard ML) 1990, 1997

 OCaml (INRIA, France) 1996

 F# (Microsoft, standard part of Visual Studio 2010)

Programming Languages - Spring 2011 33

University of Washington

Functional Programming – Haskell

 Also a strong, statically typed functional language

 Originally defined in late 80’s, first release in 1990, core group
at Glasgow

 Key difference: lazy evaluation is the norm

 Many contributions to type theory and language design

 Haskell draws a careful distinction between the purely
functional part and impure code; theory of Monads to deal
with I/O and other side effects in a functional system

 Now mostly hosted at Microsoft Research, Cambridge
(England)
 Right down the hall from the F# folks

Programming Languages - Spring 2011 34

University of Washington

Functional Programming redux

 First-class functions, polymorphic types, immutable data,
type theory

 These have been around for 30+ years, but are starting to
show up in all sorts of interesting places
 Databases (Microsoft LINQ)

 Big data & concurrency (Google MapReduce, open source Hadoop)

 Mainstream languages (lambdas and closures in recent Java, C#)

 Parallel programming (multicore)

 Software tools for analyzing bugs, safety, more…

 Next?

Programming Languages - Spring 2011 35

University of Washington

Of things not covered

 Basic

 “Visual programming” languages

 Languages for beginners / non-programmers: Logo,
Processing (artists as well as beginners), Alice

 Constraint and logic languages (prolog, clpr, excel(!))

 Objective C (C meets Smalltalk, the “other” object-oriented
extension to C; used in NeXt/Apple systems, your iGadget)

 Scripting languages (Perl, Python, Ruby, …)
 Ruby is the most interesting of this bunch, combining scripting with

Smalltalk semantics and other PL ideas

 Javascript

 Many more…

Programming Languages - Spring 2011 36

University of Washington

Language Futures

 (Editorial opinion) The Java stampede knocked the wind out of new
programming language development for a decade

 New ideas have started to get traction in the last few years
 Languages built on top of JVM (Clojure, Groovy, Python and Ruby

implementations)

 New languages that combine functional and object-oriented programming
in interesting ways: Scala is a high-profile example

 Programming now is more about plugging components together
than in the old days, where hard-core CS was essential

 What language do you think you’ll be using in 10 years?

 What ideas will you contribute?

Programming Languages - Spring 2011 37

