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CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 12— Parametric Polymorphism; Equivalence

Hal Perkins CSE341 Spring 2011, Lecture 12 1



'

&

$

%

Today

Two more “conceptual” topics

• Higher density of more abstract concepts as course progresses

• Think about the theory and how languages “fit together”, not just

how do I “code something up”

1. Parametric polymorphism

• Also: Type constructors (e.g., ML’s list and option)

2. Equivalence

• When are two functions or other expressions “the same”
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Parametric Polymorphism

Fancy phrase for “forall types” or sometimes “generics.” In ML since

mid-80s and now in Java, C#, VB, etc.

• (C++ templates are more like macros (later)).

In ML, there’s an implicit “for all” at the beginning of any type with

’a, ’b, etc. Example:

(’a * ’b) -> (’b * ’a)

really means:

forall ’a, ’b . ((’a * ’b) -> (’b * ’a))

(though forall is just for lecture purposes; it is not in ML)

We can instantiate the type variables to get a less general type. For

example, with string for ’a and int->int for ’b we get:

(string * (int -> int)) -> ((int->int) * string)
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All the types

In principle, we could have a very flexible way of building types:

• Base types like int, string, real, ...

• Compound types like t1 * t2 and t1 -> t2 where t1 and t2

are any type

• Polymorphic types like forall ’a. t where ’a can appear in t.

Would let you have types like

(forall ’a. ’a -> (’a*’a)) -> ((int*int) * (bool*bool))

Every language has limits; in ML there is no type like this.

The forall is always implicit and “all the way to the outside left”, for

example this different type:

(’a -> (’a * ’a)) -> ((int * int) * (bool * bool))
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Example

This code is fine, but ML disallows it to make type inference easier.

(* function f does _not_ type-check *)

fun f pairmaker = (pairmaker 7, pairmaker true)

val x = f (fn y => (y,y))
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Versus Subtyping

Compare:

fun swap (x,y) = (y,x) (* (’a * ’b) -> (’b * ’a) *)

with:

class Pair {

Object x;

Object y;

Pair(Object _x, Object _y) { x=_x; y=_y; }

static Pair swap(Pair pr) {return new Pair(pr.y, pr.x);}

}

ML wins in two ways (for this example):

• Caller instantiates types, so doesn’t need to cast fields of result

• Callee cannot return a pair of any two objects.

That’s why Java added generics...
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Java Generics

class Pair<T1,T2> {

T1 x;

T2 y;

Pair(T1 _x, T2 _y) { x=_x; y=_y; }

static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> pr) {

return new Pair<T2,T1>(pr.y,pr.x);

}

}

This really is a step forward despite the clutter, i.e., it is

fun swap (x,y) = (y,x)

with explicit types and other verbiage.
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Containers

Parametric polymorphism is also ideal for functions over containers

(lists, sets, hashtables, etc.) where elements have the same type.

Example: ML lists

val :: : (’a * (’a list)) -> ’a list (* infix is syntax *)

val map : ((’a -> ’b) * (’a list)) -> ’b list

val sum : int list -> int

val fold : (’a * ’b -> ’b) -> (’a list) -> ’b

list is not a type; if t is a type, then t list is a type.
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User-defined type constructors

Language-design: If something is useful for a built-in feature, it is

useful for progerammer-defined stuff too.

So: Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list = One of ’a

| More of ’a * (’a non_mt_list)

datatype (’a,’b) mytree =

Leaf of ’a

| Node of ’b * (’a,’b) mytree * (’a,’b) mytree

Example construction of values:

Node("hi",Leaf 17,Leaf 4) (* (string,int) mytree *)

Node(14,Leaf "hi",Leaf "mom") (* (int,string) mytree *)

(* Node("hi",Leaf 17,Leaf true) *) (* doesn’t type-check *)
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What about lists?

Now everything about lists is syntactic sugar!

• Constuctors use funny (infix) syntax

• [1,2,3] syntax is built-in

But otherwise it is basically:

datatype ’a list = [] | :: of ’a * (’a list)
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One last thing – not on the test

Polymorphism and mutation can be a dangerous combination.

val x = ref [] (* ’a list ref *)

val _ = x := ["hi"] (* instantiate ’a with string *)

val _ = (hd(!x)) + 7 (* instantiate ’a with int -- bad!! *)

To prevent this, ML has “the value restriction”: bindings can only get

polymorphic types if they are initialized with values.

Alas, that means this does not work even though it should be fine:

val pr_list = List.map (fn x => (x,x))

But these all work:

val pr_list : int list -> (int*int) list =

List.map (fn x => (x,x))

val pr_list = fn lst => List.map (fn x => (x,x)) lst

fun pr_list lst = List.map (fn x => (x,x)) lst
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Equivalence

“Equivalence” is a fundamental programming concept

• Code maintenance (simplify code)

• Backward-compatibility (add new optional features)

• Program optimization (make faster without breaking it)

• Abstraction and strong interfaces (previous lecture)

But what does it mean for an expression (or program) e1 to be

“equivalent” to expression e2?
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Toward a definition

“Equivalence” really depends on what is observable.

• Two different sorting algorithms generally “are equivalent”.

• But if one takes a second and the other takes a century?

In programming languages, we generally ignore internal differences like

running time, private data structures used, etc.

• Otherwise too few things would be “equivalent” — we want to

justify replacing code with “better (or at least as good) but

equivalent”
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A definition
Two functions are equivalent if they have the same observable

behavior no matter how they are used anywhere in any program.

Given the same argument/environment:

1. they produce the same result.

2. they have the same (non)termination behavior.

3. they mutate the same memory the same way.

4. they do the same input/output.

5. they raise the same exceptions.

Discouraging/forbidding 3, 4, and 5, helps ensure equivalence.

• For example, if you “stay functional” then (f x) + (f x) can

be replaced by (f x)*2 without consulting what f is bound to.

• (Side)-effects are often worth discouraging in any language.
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Function equivalences

There are 3 very general things you can do with functions that

produce equivalent code. Recognizing them (and their subtle caveats)

can make you a better programmer.

1. Systematic renaming of variables

2. “Inlining” by replacing a function call with a body + substitutions

3. Unnecessary function wrapping

We will probably discuss these notions of equivalence and the notion

of “free variables” later in the course.
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Syntactic Sugar

When all expressions using one construct are totally equivalent to

another more primitive construct, we say the former is “syntactic

sugar”.

• Makes language definition easier

• Makes language implementation easier

Examples:

• e1 andalso e2 (define as a conditional)

• if e1 then e2 else e3 (define as a case)

• tuples are really records with field names 1, 2, ...

Note: The error messages used to be even worse because the

type-checker worked on a desugared version of your code.
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Almost sugar

#1 e is not quite sugar because it works for pairs and triples

If we ignore types, then we have this equivalence too:

let val p = e1 in e2 end is just (fn p => e2) e1.
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