CSE 341.
Programming Languages

Hal Perkins
Spring 2011
Lecture 12— Parametric Polymorphism; Equivalence

-

Hal Perkins CSE341 Spring 2011, Lecture 12



ﬂl’oday \

Two more “conceptual” topics

e Higher density of more abstract concepts as course progresses

e Think about the theory and how languages “fit together”, not just
how do | “code something up”

1. Parametric polymorphism

e Also: Type constructors (e.g., ML's 1ist and option)

2. Equivalence

e When are two functions or other expressions “the same”

- /

Hal Perkins CSE341 Spring 2011, Lecture 12 2




/Parametric Polymorphism \

Fancy phrase for “forall types’ or sometimes “generics.” In ML since
mid-80s and now in Java, C#, VB, etc.

e (C++ templates are more like macros (later)).

In ML, there's an implicit “for all” at the beginning of any type with
’a, ’b, etc. Example:

(’a * ’b) -> (b * ’a)
really means:

forall ’a, ’b . ((Pa *x ’b) => (’b * ’a))
(though forall is just for lecture purposes; it is not in ML)

We can instantiate the type variables to get a less general type. For
example, with string for ’a and int->int for ’b we get:

\\ (string * (int -> int)) -> ((int->int) * string)

/

Hal Perkins CSE341 Spring 2011, Lecture 12 3



/AII the types \

In principle, we could have a very flexible way of building types:

e Base types like int, string, real, ...

e Compound types like t1 * t2 and t1 -> t2 where t1 and t2
are any type

e Polymorphic types like forall ’a. t where ’a can appear in t.

Would let you have types like
(forall ’a. ’a -> (Pax’a)) —-> ((int*int) * (bool*bool))

Every language has limits; in ML there is no type like this.

The forall is always implicit and “all the way to the outside left”, for

example this different type:
(’a => (’a * ’a)) -> ((int * int) * (bool * bool))

- /

Hal Perkins CSE341 Spring 2011, Lecture 12 4




/Example \

This code is fine, but ML disallows it to make type inference easier.

(x function f does _not_ type-check *)
fun f pairmaker = (pairmaker 7, pairmaker true)

val x = £ (fn y => (y,y))

- /

Hal Perkins CSE341 Spring 2011, Lecture 12 5




/\/ersus Subtyping \

Compare:

fun swap (x,y) = (y,x) (x (Pa * ’b) -> (’b * ’a) *)

with:
class Pair {
Object x;
Object y;
Pair(Object _x, Object _y) { x=_x; y=_y; }
static Pair swap(Pair pr) {return new Pair(pr.y, pr.x);}

+
ML wins in two ways (for this example):
e Caller instantiates types, so doesn’'t need to cast fields of result

e Callee cannot return a pair of any two objects.

\\;ihaES\Nhy Java added generics... ////

Hal Perkins CSE341 Spring 2011, Lecture 12 6




/Java Generics

class Pair<T1,T2> {
Tl x;
T2 vy;
Pair(T1 _x, T2 _y) { x=_x; y=_y; }
static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> pr) {
return new Pair<T2,T1>(pr.y,pr.x);

+

This really is a step forward despite the clutter, i.e., it is
fun swap (x,y) = (y,x)

with explicit types and other verbiage.

-

Hal Perkins CSE341 Spring 2011, Lecture 12 7



/Containers \

Parametric polymorphism is also ideal for functions over containers
(lists, sets, hashtables, etc.) where elements have the same type.

Example: ML lists

val :: : (Pa * (Pa list)) -> ’a list (* infix is syntax *)
val map : ((’a -> ’b) * (’a list)) -> ’b list

val sum : int list -> int

val fold : (’a * ’b -> ’b) -> (’a list) -> ’D

list is not a type; if t is a type, then t 1list is a type.

- /

Hal Perkins CSE341 Spring 2011, Lecture 12 8




/User—defined type constructors \

Language-design: If something is useful for a built-in feature, it is

useful for progerammer-defined stuff too.
So: Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list One of ’a

More of ’a * (’a non_mt_1list)

datatype (’a,’b) mytree
Leaf of ’a

| Node of ’b * (’a,’b) mytree * (’a,’b) mytree
Example construction of values:

Node("hi",Leaf 17,Leaf 4) (x (string,int) mytree *)
Node(14,Leaf "hi",Leaf "mom") (* (int,string) mytree *)
\\fj Node("hi",Leaf 17,Leaf true) *) (* doesn’t type—checﬁ/j)

Hal Perkins CSE341 Spring 2011, Lecture 12 9



/VVhat about lists?

Now everything about lists is syntactic sugar!
e Constuctors use funny (infix) syntax
e [1,2,3] syntax is built-in

But otherwise it is basically:

datatype ’a list = [1 | :: of ’a * (Pa list)

-

Hal Perkins CSE341 Spring 2011, Lecture 12

10




/One last thing — not on the test \

Polymorphism and mutation can be a dangerous combination.

val x = ref [] (x ’a list ref *)
val _ = x := ["hi"] (% instantiate ’a with string *)
val _ = (hd('x)) + 7 (x instantiate ’a with int -- bad!! *)

To prevent this, ML has “the value restriction”: bindings can only get
polymorphic types if they are initialized with values.

Alas, that means this does not work even though it should be fine:
val pr_list = List.map (fn x => (x,x))
But these all work:

val pr_list : int list -> (int*int) list =
List.map (fn x => (x,x))
val pr_list = fn 1lst => List.map (fn x => (x,x)) 1st

\\f?n pr_list 1lst = List.map (fn x => (x,x)) lst ////

Hal Perkins CSE341 Spring 2011, Lecture 12 11




/Equivalence

“Equivalence” is a fundamental programming concept
e Code maintenance (simplify code)
e Backward-compatibility (add new optional features)
e Program optimization (make faster without breaking it)
e Abstraction and strong interfaces (previous lecture)

But what does it mean for an expression (or program) el to be
“equivalent” to expression e2?

-

Hal Perkins CSE341 Spring 2011, Lecture 12

12




ﬂl'oward a definition

~

“Equivalence” really depends on what is observable.
e Two different sorting algorithms generally “are equivalent”.

e But if one takes a second and the other takes a century?

In programming languages, we generally ignore internal differences like

running time, private data structures used, etc.

e Otherwise too few things would be “equivalent” — we want to

justify replacing code with “better (or at least as good) but

equivalent”

-

Hal Perkins CSE341 Spring 2011, Lecture 12

13



/A definition \

Two functions are equivalent if they have the same observable

behavior no matter how they are used anywhere in any program.

Given the same argument/environment:
1. they produce the same result.
2. they have the same (non)termination behavior.
3. they mutate the same memory the same way.
4. they do the same input/output.
5. they raise the same exceptions.
Discouraging/forbidding 3, 4, and 5, helps ensure equivalence.

e For example, if you “stay functional” then (f x) + (f x) can
be replaced by (f x)*2 without consulting what £ is bound to.

\\o (Side)-effects are often worth discouraging in any language. /

Hal Perkins CSE341 Spring 2011, Lecture 12 14



~

/Function equivalences

There are 3 very general things you can do with functions that
produce equivalent code. Recognizing them (and their subtle caveats)

can make you a better programmer.

1. Systematic renaming of variables

2. “Inlining” by replacing a function call with a body + substitutions

3. Unnecessary function wrapping

We will probably discuss these notions of equivalence and the notion

of “free variables” later in the course.

- /

Hal Perkins CSE341 Spring 2011, Lecture 12 15




/Syntactic Sugar \

When all expressions using one construct are totally equivalent to
another more primitive construct, we say the former is “syntactic

sugar' .

e Makes language definition easier

e Makes language implementation easier
Examples:

e ¢l andalso e2 (define as a conditional)

e if el then e2 else e3 (define as a case)

e tuples are really records with field names 1, 2, ...

Note: The error messages used to be even worse because the

\jpe—checker worked on a desugared version of your code. /

Hal Perkins CSE341 Spring 2011, Lecture 12 16



/Almost sugar

#1 e is not quite sugar because it works for pairs and triples

If we ignore types, then we have this equivalence too:

let val p = el in e2 end is just (fn p => e2) el.

-

Hal Perkins CSE341 Spring 2011, Lecture 12

17




