
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 12— Parametric Polymorphism; Equivalence

Hal Perkins CSE341 Spring 2011, Lecture 12 1



'

&

$

%

Today

Two more “conceptual” topics

• Higher density of more abstract concepts as course progresses

• Think about the theory and how languages “fit together”, not just

how do I “code something up”

1. Parametric polymorphism

• Also: Type constructors (e.g., ML’s list and option)

2. Equivalence

• When are two functions or other expressions “the same”

Hal Perkins CSE341 Spring 2011, Lecture 12 2



'

&

$

%

Parametric Polymorphism

Fancy phrase for “forall types” or sometimes “generics.” In ML since

mid-80s and now in Java, C#, VB, etc.

• (C++ templates are more like macros (later)).

In ML, there’s an implicit “for all” at the beginning of any type with

’a, ’b, etc. Example:

(’a * ’b) -> (’b * ’a)

really means:

forall ’a, ’b . ((’a * ’b) -> (’b * ’a))

(though forall is just for lecture purposes; it is not in ML)

We can instantiate the type variables to get a less general type. For

example, with string for ’a and int->int for ’b we get:

(string * (int -> int)) -> ((int->int) * string)

Hal Perkins CSE341 Spring 2011, Lecture 12 3



'

&

$

%

All the types

In principle, we could have a very flexible way of building types:

• Base types like int, string, real, ...

• Compound types like t1 * t2 and t1 -> t2 where t1 and t2

are any type

• Polymorphic types like forall ’a. t where ’a can appear in t.

Would let you have types like

(forall ’a. ’a -> (’a*’a)) -> ((int*int) * (bool*bool))

Every language has limits; in ML there is no type like this.

The forall is always implicit and “all the way to the outside left”, for

example this different type:

(’a -> (’a * ’a)) -> ((int * int) * (bool * bool))

Hal Perkins CSE341 Spring 2011, Lecture 12 4



'

&

$

%

Example

This code is fine, but ML disallows it to make type inference easier.

(* function f does _not_ type-check *)

fun f pairmaker = (pairmaker 7, pairmaker true)

val x = f (fn y => (y,y))

Hal Perkins CSE341 Spring 2011, Lecture 12 5



'

&

$

%

Versus Subtyping

Compare:

fun swap (x,y) = (y,x) (* (’a * ’b) -> (’b * ’a) *)

with:

class Pair {

Object x;

Object y;

Pair(Object _x, Object _y) { x=_x; y=_y; }

static Pair swap(Pair pr) {return new Pair(pr.y, pr.x);}

}

ML wins in two ways (for this example):

• Caller instantiates types, so doesn’t need to cast fields of result

• Callee cannot return a pair of any two objects.

That’s why Java added generics...

Hal Perkins CSE341 Spring 2011, Lecture 12 6



'

&

$

%

Java Generics

class Pair<T1,T2> {

T1 x;

T2 y;

Pair(T1 _x, T2 _y) { x=_x; y=_y; }

static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> pr) {

return new Pair<T2,T1>(pr.y,pr.x);

}

}

This really is a step forward despite the clutter, i.e., it is

fun swap (x,y) = (y,x)

with explicit types and other verbiage.

Hal Perkins CSE341 Spring 2011, Lecture 12 7



'

&

$

%

Containers

Parametric polymorphism is also ideal for functions over containers

(lists, sets, hashtables, etc.) where elements have the same type.

Example: ML lists

val :: : (’a * (’a list)) -> ’a list (* infix is syntax *)

val map : ((’a -> ’b) * (’a list)) -> ’b list

val sum : int list -> int

val fold : (’a * ’b -> ’b) -> (’a list) -> ’b

list is not a type; if t is a type, then t list is a type.

Hal Perkins CSE341 Spring 2011, Lecture 12 8



'

&

$

%

User-defined type constructors

Language-design: If something is useful for a built-in feature, it is

useful for progerammer-defined stuff too.

So: Let programmers declare type constructors.

Examples:

datatype ’a non_mt_list = One of ’a

| More of ’a * (’a non_mt_list)

datatype (’a,’b) mytree =

Leaf of ’a

| Node of ’b * (’a,’b) mytree * (’a,’b) mytree

Example construction of values:

Node("hi",Leaf 17,Leaf 4) (* (string,int) mytree *)

Node(14,Leaf "hi",Leaf "mom") (* (int,string) mytree *)

(* Node("hi",Leaf 17,Leaf true) *) (* doesn’t type-check *)

Hal Perkins CSE341 Spring 2011, Lecture 12 9



'

&

$

%

What about lists?

Now everything about lists is syntactic sugar!

• Constuctors use funny (infix) syntax

• [1,2,3] syntax is built-in

But otherwise it is basically:

datatype ’a list = [] | :: of ’a * (’a list)

Hal Perkins CSE341 Spring 2011, Lecture 12 10



'

&

$

%

One last thing – not on the test

Polymorphism and mutation can be a dangerous combination.

val x = ref [] (* ’a list ref *)

val _ = x := ["hi"] (* instantiate ’a with string *)

val _ = (hd(!x)) + 7 (* instantiate ’a with int -- bad!! *)

To prevent this, ML has “the value restriction”: bindings can only get

polymorphic types if they are initialized with values.

Alas, that means this does not work even though it should be fine:

val pr_list = List.map (fn x => (x,x))

But these all work:

val pr_list : int list -> (int*int) list =

List.map (fn x => (x,x))

val pr_list = fn lst => List.map (fn x => (x,x)) lst

fun pr_list lst = List.map (fn x => (x,x)) lst

Hal Perkins CSE341 Spring 2011, Lecture 12 11



'

&

$

%

Equivalence

“Equivalence” is a fundamental programming concept

• Code maintenance (simplify code)

• Backward-compatibility (add new optional features)

• Program optimization (make faster without breaking it)

• Abstraction and strong interfaces (previous lecture)

But what does it mean for an expression (or program) e1 to be

“equivalent” to expression e2?

Hal Perkins CSE341 Spring 2011, Lecture 12 12



'

&

$

%

Toward a definition

“Equivalence” really depends on what is observable.

• Two different sorting algorithms generally “are equivalent”.

• But if one takes a second and the other takes a century?

In programming languages, we generally ignore internal differences like

running time, private data structures used, etc.

• Otherwise too few things would be “equivalent” — we want to

justify replacing code with “better (or at least as good) but

equivalent”

Hal Perkins CSE341 Spring 2011, Lecture 12 13



'

&

$

%

A definition
Two functions are equivalent if they have the same observable

behavior no matter how they are used anywhere in any program.

Given the same argument/environment:

1. they produce the same result.

2. they have the same (non)termination behavior.

3. they mutate the same memory the same way.

4. they do the same input/output.

5. they raise the same exceptions.

Discouraging/forbidding 3, 4, and 5, helps ensure equivalence.

• For example, if you “stay functional” then (f x) + (f x) can

be replaced by (f x)*2 without consulting what f is bound to.

• (Side)-effects are often worth discouraging in any language.

Hal Perkins CSE341 Spring 2011, Lecture 12 14



'

&

$

%

Function equivalences

There are 3 very general things you can do with functions that

produce equivalent code. Recognizing them (and their subtle caveats)

can make you a better programmer.

1. Systematic renaming of variables

2. “Inlining” by replacing a function call with a body + substitutions

3. Unnecessary function wrapping

We will probably discuss these notions of equivalence and the notion

of “free variables” later in the course.

Hal Perkins CSE341 Spring 2011, Lecture 12 15



'

&

$

%

Syntactic Sugar

When all expressions using one construct are totally equivalent to

another more primitive construct, we say the former is “syntactic

sugar”.

• Makes language definition easier

• Makes language implementation easier

Examples:

• e1 andalso e2 (define as a conditional)

• if e1 then e2 else e3 (define as a case)

• tuples are really records with field names 1, 2, ...

Note: The error messages used to be even worse because the

type-checker worked on a desugared version of your code.

Hal Perkins CSE341 Spring 2011, Lecture 12 16



'

&

$

%

Almost sugar

#1 e is not quite sugar because it works for pairs and triples

If we ignore types, then we have this equivalence too:

let val p = e1 in e2 end is just (fn p => e2) e1.

Hal Perkins CSE341 Spring 2011, Lecture 12 17


