
CSE 341, Spring 2011, Lecture 13 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of

all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

Last update: 4/24/11 to reflect change to DrRacket from DrScheme. HP

For the next couple weeks, we will use the Scheme programming language in our lectures and homeworks
rather than ML. Our focus will remain largely on key programming language constructs. We will “switch”
to Scheme because several of these concepts shine better in Scheme. That said, Scheme and ML share many
similarities — both are mostly functional languages, i.e., mutation exists but is discouraged — so it will be
good to see functional programming in a somewhat different setting. This lecture is a bit more basic since
we need to introduce Scheme before we start using it to study more advanced concepts. The most interesting
topic in this lecture is Scheme’s different rules for creating local environments (let vs. letrec vs. let*).

Before diving into Scheme specifics, here are some differences from ML we will be studying:

• Every binding is mutable in standard Scheme (not entirely true in the version we will be using)

• The syntax is extremely minimal; everything is an atom or a parenthesized sequence

• The language is dynamically typed

• We can treat programs as data

• It has a (hygienic) macro system

• The DrRacket system/language we will use has a module system that takes a different approach to
abstraction, using define-struct

• There is no pattern-matching

• (One feature we will not have time for is first-class continuations.)

We will use the DrRacket environment. There are a couple key notes for setting it up for this course:

• Set the language level to PLT→Pretty Big

• Racket is installed on the Windows machines in the lab. You can easily install it on your own machine
(Windows, Mac, or Linux). The most recent version would be best, but any version should be okay.

• DrRacket is the current incarnation of a programming environment that was known as DrScheme until
summer 2010. Some references to DrScheme may still be present in the slides or notes; please make
the appropriate mental adjustment and, if you can, report them to your instructor so we can fix them.

A Scheme program is a sequence, most elements of which are definitions. A definition like

(define a 3)

extends the top-level environment so that a is bound to 3. Therefore a subsequent definition like

(define b (+ a 2))

would bind b to 5. In general, if we have (define v e) where v is a variable and e is an expression, we
evaluate e to a value and change the environment so that v is bound to that value. Other than the syntax,
this should seem very familiar. In Scheme, everything is prefix, such as the addition function used above.

An anonymous function that takes one argument is written (lambda (x) e) where the argument is the
variable x and the body is the expression e. So this definition binds a cubing function to cube1:

1



(define cube1

(lambda (x)

(* x (* x x))))

In Scheme, different functions really take different numbers of arguments and it is a run-time error to
call a function with the wrong number. A three argument function would look like (lambda (x y z) e).
However, many functions can take any number of arguments. The multiplication function, *, is one of them,
so we could have written

(define cube2

(lambda (x)

(* x x x)))

We may learn later how to define our own variable-number-of-arguments functions.
There is a very common form of syntactic sugar for defining functions where you do not need to use the

lambda keyword:

(define (cube3 x)

(* x x x))

This is more like ML’s fun binding, but in ML fun is not just syntactic sugar since it is necessary for
recursion. In Scheme, we can use lambda and a define for recursive functions, so this shorter and preferable
form really is just sugar.

Here is some more code to demonstrate conditionals and currying:

(define (cube3 x)

(* x x x))

(define (pow1 x y)

(if (= y 0)

1

(* x (pow1 x (- y 1)))))

(define pow2

(lambda (y)

(lambda (x)

(pow1 x y))))

(define cube4 (pow2 3))

The syntax for a conditional is (if e1 e2 e3) where e1, e2, and e3 are expressions. If e1 evaluates to
#f, then e2 is evaluated and the result returned, else e3. Everything that is not #f is “true”, not just the
constant #t. Notice how this is much more flexible type-wise than anything in ML.

While the code above used currying, there is no special syntax for it. If f is a curried 3-argument function,
you would have to call it with (((f e1) e2) e3).

You have probably noticed that Scheme uses lots of parentheses. Here are some relevant comments:

• For reasons your instructor has never fully understood, many people seem to dislike Scheme just because
of this syntactic decision. It really does seem to be, “judging a book by its cover.” Moreover, few of
these people seem to mind XML, which is just as parenthetical, just with things like <foo>...</foo>

instead of (foo ...) (and notice which is longer).

• Parentheses matter! You cannot just decide to take an expression like (+ 2 3) and add more paren-
theses. The expression ((+ 2 3)) means, “evaluate the addition to get 5 then try to apply 5 as a
function to 0 arguments.” This will understandably result in an error. Additional examples of wrong
parenthesization are below.

2



• Scheme’s parentheses lead to a very simple syntax for the language. Because everything is prefix and
parenthesized, there is never any ambiguity about how things associate with each other. In other
languages, you might wonder whether if true then 1 else 3 + 4 evaluates to 1 or 5, but Scheme’s
(if #t 1 (+ 3 4)) makes such questions obvious.

In general, the syntax of everything in Scheme is either an atom (some basic thing like a number, string,
symbol, #t or #f, etc.) or a sequence of things (t1 t2 ... tn). If t1 is a special form like define or
lambda or some other things we’ll see shortly, then that affects what the remaining terms in the sequence
mean and where the parentheses should be. Otherwise, the sequence is a function call – we evaluate t1 to a
value that should be a function closure, the other expressions to values, and we do the call.

Programmers new to Scheme sometimes struggle with remembering that parentheses matter and deter-
mining why programs fail when they are misparenthesized. As an example consider these six definitions.
The first is a correct implementation of factorial and the others are wrong:

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1))))) ; 1

(define (fact n) (if (= n 0) (1) (* n (fact (- n 1))))) ; 2

(define (fact n) (if = n 0 1 (* n (fact (- n 1))))) ; 3

(define fact (n) (if (= n 0) 1 (* n (fact (- n 1))))) ; 4

(define (fact n) (if (= n 0) 1 (* n fact (- n 1)))) ; 5

(define (fact n) (if (= n 0) 1 (* n ((fact) (- n 1))))) ; 6

Line Error
2 calls 1 as a function taking no arguments
3 uses if with 5 subexpressions instead of 3
4 defines a variable fact by calling n and then something else
5 calls * with a function as one of the arguments
6 calls fact with 0 arguments

Scheme has built-in lists, much like ML, and Scheme programs probably use lists even more often in
practice than ML programs. Scheme does not have pattern matching, so we just use built-in functions for
building lists, extracting parts, and seeing if they are empty. The function names are a historical accident.

Primitive Description Example
() The empty list ()

cons Construct a list (cons 2 ())

car Get first element (car some-list)

cdr Get tail of a list (cdr some-list)

null? Return #t for () and #f otherwise (null? some-value)

Here are three examples using these functions:

(define (sumlist lst)

(if (null? lst)

0

(+ (car lst) (sumlist (cdr lst)))))

(define (append lst1 lst2)

(if (null? lst1)

lst2

(cons (car lst1) (append (cdr lst1) lst2))))

(define (map f lst)

(if (null? lst)

()

(cons (f (car lst)) (map f (cdr lst)))))

3



There is also a built-in function list for building a list from any number of elements, so you can write
(list 2 3 4) instead of (cons 2 (cons 3 (cons 4 ()))).

Unlike in ML, we do not have a type-checker restricting things like the type of list elements. A list
can hold any values. So (list #t "hi" 14) is no problem. If you build such things, you either have to
“remember” what is where or use primitive testing-functions like null? to see what you have. For example,
number? evaluates to #t when applied to a number and #f otherwise.

Here is an example where we assume we have a list that holds either numbers or other lists that hold
either numbers or other lists, etc., and we sum up all the numbers in all the lists:

(define (sum1 lst)

(if (null? lst)

0

(if (number? (car lst))

(+ (car lst) (sum1 (cdr lst)))

(+ (sum1 (car lst)) (sum1 (cdr lst))))))

While the code above is fine, when you have many nested conditionals, the cond special-form is easier
and better style:

(define (sum2 lst)

(cond [(null? lst) 0]

[(number?(car lst)) (+ (car lst)(sum2 (cdr lst)))]

[#t (+ sum2 (car lst)) (sum2 (cdr lst))]))

Using square brackets is just style – they are completely interchangeable with ordinary parentheses. A
cond just has any number of parenthesized pairs of expressions, [e1 e2]. The first is a test; if it evaluates
to #f we skip to the next branch. Otherwise we evaluate e2 and that is the answer. As a matter of style,
your last branch should have the test #t, so you do not “fall off the bottom” in which case the result is some
sort of “void object” that you do not want to deal with.

As with if, the result of a test does not have to be #t or #f. Anything other than #f is interpreted as
true for the purpose of the test. It is sometimes bad style to exploit this feature, but it can be useful.

Now let’s consider (pun intended) how to create local bindings in Scheme. There are let-expressions,
which have the form:

(let ([x1 e1]

[x2 e2]

...

[xn en])

e)

where the x’s are variables, the e’s are expressions, and as always the choice of brackets versus parentheses
is just style. As you might expect, the result of evaluating e1 is bound to x1 in the body e — and similarly
for x2, ..., xn — and the result of evaluating e is the overall answer. However, unlike in ML, x1 is not in the
environment used to evaluate e2, and so on. That is, the environment for evaluating e1, e2, ..., en is the
same environment from “before” the let-expression. Therefore, this silly function doubles its argument:

(define (double1 x)

(let ([x (+ x 3)]

[y (+ x 2)])

(+ x y -5)))

For behavior more like ML’s let-expression, we have the variant let*, which is syntactically the same
but each variable is in scope for the subsequent bindings. For example, this silly function also doubles its
argument:

4



(define (double2 x)

(let* ([x (+ x 3)]

[y (+ x 2)])

(+ x y -8)))

Notice we do not need let* since we could always just use n nested let expressions with 1 binding each
instead of a let* with n bindings, but let* is shorter and better style.

Neither let nor let* allows recursion since the e1, e2, ..., en cannot refer to the binding being defined
or any later ones. To do so, we have a third variant letrec, which lets us write:

(define (double3 x)

(letrec ([y (+ x 2)]

[f (lambda (z) (+ z y w))]

[w (+ x 7)])

(f -9)))

One typically uses letrec to define one or more (mutually) recursive functions, such as this very slow
method for taking a non-negative number mod 2:

(define (mod2 x)

(letrec

([even?(lambda (x) (if (zero? x) #t (odd? (- x 1))))]

[odd? (lambda (x) (if (zero? x) #f (even? (- x 1))))])

(if (even? x) 0 1)))

Alternately, you can get the same behavior as letrec by using local defines. Your instructor doesn’t like
this style as much, but others do:

(define (mod2_b x)

(define even? (lambda(x)(if (zero? x) #t (odd? (- x 1)))))

(define odd? (lambda(x)(if (zero? x) #f (even? (- x 1)))))

(if (even? x) 0 1))

It is worth understanding how exactly the 3 forms of let differ because how variables are looked up in
an environment is a fundamental feature of a programming language. Different languages have different
approaches, and Scheme just happens to have multiple variations.

In fact, at top-level (outside of any define), Scheme’s rules are a bit different than any of let, let*, or
letrec. To a first approximation, all the define’s in a program are in “one big letrec” so (unlike ML) an
earlier function can use a later one and there is no special syntax for (mutual) recursion. So this works to
define a function that increments its argument:

(define f (lambda (x) (+ x a)))

(define a 1) ; order does not really matter

(define b (f 3)) ; b bound to 4

However, we do evaluate definitions in order and a variable must be in the environment when we look it
up. So this does not work:

(define x (+ y 1)) ; y is not bound so you get an error

(define y 7)

In our first example, we did not look up a until it was in the top-level environment. The top-level environment
is changed (mutated!) with each define and all closures have access to this changed environment.

While this is convenient for putting functions in whatever order you want, it is a problem if you redefine
something at the top-level. In ML, that would not affect any earlier bindings and it would just shadow
the redefined variable for later bindings. In Scheme, it changes what something is bound to for the whole

5



program. Scheme programs typically just assume this doesn’t happen and that’s what you should assume
too on your homework.

But just to understand, what redefinition means, consider something like this:

(define (g x) (+ x 13))

(define (f x) (+ (g x) 1))

(define g 37)

(f 12)

This program will fail since the body of f will look up g in the top-level environment and get 37, the redefined
value, and this is not a function. Whenever you are programming and mutation can potentially make your
code incorrect, a solution is make a local copy before the mutation can occur. In this case, a solution would
be:

(define (g x) (+ x 13))

(define f

(let ([g g])

(lambda (x)

(+ (g x) 1))))

(define g 37)

(f 12)

Now the closure bound to f looks up a non-top-level g that is bound to the original closure that adds 13 to
its argument. Notice the let must be outside the lambda though; otherwise the local g won’t get created
until the function bound to f is called and that is too late.

However, our revised definition for f is still not enough to ensure the closure always adds 14 to its
argument. After all, + is just a top-level function, so evil code like (define + -) could change the behavior
of f to subtract 14 from its argument. We can protect against this as well:

(define f

(let ([g g]

[+ +])

(lambda (x)

(+ (g x) 1))))

Again, nobody actually does this in Scheme. Furthermore, DrRacket’s Pretty Big dialect disallows rebinding
of standard names like +, so we are unlikely to run into the problem. The point is just that the possibility
of mutation makes it very difficult to write correct code.

6


