
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 20— Duck Typing, Blocks & Proces & Iterators, Inheritance

& Overriding

Hal Perkins CSE341 Spring 2011, Lecture 20 1

'

&

$

%

Today

Three separate topics (mostly the last one?)

1. “Duck Typing”

2. Blocks and iterators (closures in Ruby)

3. Subclassing (inheritance, overriding, dynamic-dispatch, some

design issues)

Textbook and/or Section: Essential stuff for upcoming homework

• Much more on Array and Hash

• Exploratory programming

• More on blocks and iterators

Hal Perkins CSE341 Spring 2011, Lecture 20 2

'

&

$

%

Duck Typing

“If it walks like a duck and quacks like a duck, it’s a duck.”

A method might think, “I need a Foo” but really it only needs an

object that has similar enough methods that it acts enough like a Foo

that the method works.

Embracing duck typing: Methods that make method calls rather than

assume the class of their argument.

Plus: More code reuse, very OO approach

• What messages can some object receive is all that matters

Minus: Almost nothing is equivalent

• x+x versus x*2 versus 2*x

• Callees may not want callers assuming so much

Hal Perkins CSE341 Spring 2011, Lecture 20 3

'

&

$

%

Blocks and Iterators

Many methods in Ruby “take a block,” which is a “special” thing

separate from the argument list.

They are used very much like closures in functional programming; can

take 0 or more arguments (see examples)

The preferred way for iterating over arrays, doing something n times,

etc.

They really are closures (can access local variables where they were

defined).

Useful on homework: each, possibly times, inject

Useful in Ruby: many, many more

Hal Perkins CSE341 Spring 2011, Lecture 20 4

'

&

$

%

Blocks vs. Procs
These block arguments can be used only by the “immediate” callee via

the yield keyword.

If you really want a “first-class object” you can pass around, store in

fields, etc., convert the block to an instance of Proc.

• lambda {|x,y,z| e}

• Instances of Proc have a method call

• This really is exactly a closure.

Actually, there is a way for the caller to pass a block and the callee

convert it to a Proc.

• Look it up if you’re curious.

• This is what lambda does

(just a method in Object that returns the Proc it creates)

Hal Perkins CSE341 Spring 2011, Lecture 20 5

'

&

$

%

Subclasses

Ruby is dynamically typed, so subclassing is not about what

type-checks.

Subclassing is about inheriting methods from the superclass.

• In Java, it’s about inheriting fields too, but we can just write to

any field we want.

Example: ThreeDPoint inherits methods x and y.

Example: ColorPoint inherits distFromOrigin and

distFromOrigin2.

Hal Perkins CSE341 Spring 2011, Lecture 20 6

'

&

$

%

Overriding

If it were just inheritance, then with dynamic typing subclassing would

just be avoiding copy/paste.

It’s more.

But first, “simple” overriding lets us redefine methods in the subclass.

• Often convenient to use super to use superclass definition in our

definition.

This is still “just” avoiding copy-paste.

Example: distFromOrigin and initialize in ThreeDPoint.

Hal Perkins CSE341 Spring 2011, Lecture 20 7

'

&

$

%

Ruby-ish Digression

Why make a subclass when we could just add/change methods to the

class itself?

• Add a color field to Point itself

• Affects all Point instances, even those already created (!)

Plus: Now a ThreeDPoint has a color field too.

Minus: Maybe that messes up another part of your program.

Fun example: Redefining Fixnum’s + to return 5.

Hal Perkins CSE341 Spring 2011, Lecture 20 8

'

&

$

%

Late-Binding

So far, this OO stuff is honestly very much like functional programming

• Fields are just like things in a closure’s environment

But this is totally different:

• When a method defined in a superclass makes a self call it

resolves to the method defined in the subclass (typically via

overriding)

Example: distFromOrigin2 in PolarPoint still works correctly!!!

Next lecture: Studying this very carefully.

Hal Perkins CSE341 Spring 2011, Lecture 20 9

