CSE 341:
Programming Languages

Hal Perkins
Spring 2011
Lecture 24— Named Types; Polymorphism vs. Subtyping;
Polymorphism + Subtyping

-

Hal Perkins CSE341 Spring 2011, Lecture 24

/I\Iamed Types \

In Java/C++/C#/..., types don't look like
{t10 m1(t11,...), ..., tnO mn(tnl,...)}.

Instead they look like C where C is a class or interface.

But everything we learned about subtyping still applies!

e Example: could have overriding method in subtype take a
supertype of an argument
(though Java/C++/C# do overloading instead).

Yet the only subtyping is declared subtypes, plus transitivity
(e.g., class C extends D implements I,J).

e Having fewer subtypes is always sound; just allows fewer programs

Given types D, I, and J, ensure objects produced by class C's
\E)nstructors can have subtypes (more methods, contra/co, etc.) /

Hal Perkins CSE341 Spring 2011, Lecture 24 2

/I\Iamed vs. Unnamed \

For preventing “message not understood”, unnamed (“structural”)

types worked fine.
But many languages have named (“nominal”) types.

Which is better is an old argument with points on both sides.
Let's consider whether subtyping should be:
1. structural ("l have everything you need”), or

2. nominal (“I said | was a subtype explicitly”)

- /

Hal Perkins CSE341 Spring 2011, Lecture 24 3

/Some Fair Points \

For structural subtyping:

e Allows more code reuse, while remaining sound.

e Does not require refactoring or adding “implements clauses”
later when you discover you could share some implementation.

For nominal subtyping:

e Reject more code, which catches bugs and avoids accidental

method-name clashes.

e Confusion with classes saves keystrokes and “doing everything

twice' ?

o Fewer subtypes makes type-checking and efficient code-generation

easier.

- /

Hal Perkins CSE341 Spring 2011, Lecture 24 4

ﬂl’he Grand Confusion

For convenience, many languages confuse classes and types:
e Cis a class and a type

e |f C extends D, then:
— instances of the class C inherit from the class D

— expressions of type C can be subsumed to have type D

Do you usually want this confusion? Probably.

Do you always want “subclass implies subtype” ?
e No: Consider distBetween for Point and 3DPoint.
Do you always want “subtype implies subclass” ?

e No: Consider two classes with display methods and no

\\ inheritance relationship.

Hal Perkins CSE341 Spring 2011, Lecture 24

/Untangling Classes and Types

e Classes define object behavior; subclassing inherits behavior

e Subtyping defines substitutability
e Most languages require subclasses to be subtypes

Now some other common features make more sense:

e “Abstract” methods:
— Expand the supertype without providing behavior to subclass
— Superclass does not implement behavior, so no constructors

allowed (an additional static check; the class is abstract)

— The static check is the only fundamental justification

« Trivial to provide a method that raises an exception
x In Ruby, just have a message-not-understood error

\\o Interfaces (see previous lecture)

Hal Perkins CSE341 Spring 2011, Lecture 24 6

/Static Typing and Code Reuse \

Key idea: Scheme and Ruby are different but not that different:

e Scheme has arbitrarily nested lexical scope (so does Ruby via
nested blocks within a method)

e Ruby has subclassing and dynamic dispatch (but easy to code up
what you need in Scheme)

Java and ML are a bit more different:
e ML has datatypes; Java has classes
e The ML default is immutable
e ML has 1st-class functions (but see Java's inner classes)

But the key difference is the type system: ML has parametric
polymorphism. Java has subtyping with parametric polymorphism

\idded on much later (combination greater than the sum of the parts)/

Hal Perkins CSE341 Spring 2011, Lecture 24 7

/VVhat are “forall” types good for?

Some good uses for parametric polymorphism:

e Combining functions:
(x (CCa—>’b)*(’b->’c)) -> (Pa->’c) *)
fun compose (f,g) x = g (f %)
e Operating on generic container types:
isempty : (’a list) -> bool
map : ((’a list) * (’a -> ’b)) -> ’b list
e Passing private data (unnecessary with closures though):
(x (’a * ((’a * string) -> int)) -> int *)
let £ (env, g) =

let val sl = getString(37)
val s2 = getString(49)

\\\\ in g(env,sl) + g(env,s2) end

Hal Perkins CSE341 Spring 2011, Lecture 24

/Subtyping Is not right here \

If you try to use subtyping for the previous examples:

e arguments get “upcast” (to Object)

e results get downcast (from Object)
This is:

e Inconvenient and error-prone

e Avoiding the static checks

In general, when different values can be “any type” but “the same as
each other”, you want parametric polymorphism.

- /

Hal Perkins CSE341 Spring 2011, Lecture 24 9

/VVhat Is subtyping good for? \

e Passing in values with “extra” or “more useful” stuff

//can pass a Pt3D
boolean isXPos(Pt p){ return p.x > 0; }

e Passing private state like with closures

interface J { int f(int); }
class MaxEver implements J {
private int m = O;
public int f(int i) { if(i > m) m = i; return m; }

+

Parametric polymorphism is not the right thing here (there are
sophisticated workarounds)

- /

Hal Perkins CSE341 Spring 2011, Lecture 24 10

/VVanting both \

Could one language support subtyping and parametric polymorphism?

e Sure; Java and C# already do but they also let you “get around
the checks” :-(

More interestingly, you may want both at once!

A simple (7) example: Making a copy of a mutable list.

- /

Hal Perkins CSE341 Spring 2011, Lecture 24 11

