
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 25— Extensibility in OO and FP

Hal Perkins CSE341 Spring 2011, Lecture 25 1



'

&

$

%

One-of types and operations

• Given a type with several variants/subtypes and several

functions/methods, there’s a 2D-grid of code you need:

Int Negate Add Mult

eval

toString

hasZero

• OO and FP just lay out the code differently!!!

• Which is more convenient depends on what you’re doing and

how the variants/operations “fit together”

• Often, tools let you view “the other dimension”

• Opinion: Dimensional structure of code is greater than 2–3, so

we’ll never have exactly what we want in text.

Hal Perkins CSE341 Spring 2011, Lecture 25 2



'

&

$

%

Extensibility

Life gets interesting if need to extend code w/o changing existing

code.

• ML makes it easy to write new operations; Java does not

• Java makes it easy to write new variants; ML does not

• In ML the original code must plan for extensibility using

polymorphism and function arguments

• In Java the original code must plan for extensibility using

“extra” abstract methods

– (see “the visitor pattern” on your own)

Hal Perkins CSE341 Spring 2011, Lecture 25 3



'

&

$

%

Unextensibility

Extensibility is not all it’s cracked up to be:

• Makes original code more difficult to change later

• Makes code harder to reason about locally (e.g., dynamic

dispatch or functions-as-arguments mean you never know what

code might execute next)

ML and Java have different defaults, but both let you decide what

to make extensible:

• ML: Generally less extensible. Without a type constructor or a

function-argument, you limit what might happen (thanks to

closed recursion)

• Java: Generally extensible by default. But you can declare

methods or classes final; arguably under-used.

Hal Perkins CSE341 Spring 2011, Lecture 25 4


