
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 26— Garbage Collection

Hal Perkins CSE341 Spring 2011, Lecture 26 1



'

&

$

%

From The Beginning...

• What is memory management and why do we need it?

• What errors does safe memory management prevent?

• What is “drag” and why is it undesirable?

• What safe approximation does GC make?

• What are some basic GC algorithms?

• Why are real GCs so much more complicated?

• Tricks for “programming against” a GC.

Hal Perkins CSE341 Spring 2011, Lecture 26 2



'

&

$

%

Why Memory Management?

Calling an ML constructor, Scheme’s cons, Ruby/Java’s new

creates a new object.

• So does defining a nested function/block (see homework 5).

So non-trivial programs may run out of space if we do not reuse

parts of memory (a really big array of bits).

Even if you don’t run out, programs using compact space run faster.

The manual way (e.g., C):

• Reclaim space for local variables when execution leaves the

function/block. (Callers cannot access these stack “objects”.)

• Reclaim other space (heap objects) when the programmer says

to, e.g. free(x) or delete(x).

Hal Perkins CSE341 Spring 2011, Lecture 26 3



'

&

$

%

What Could Go Wrong?

Memory management is difficult because we want both:

• No accessing reclaimed objects (i.e., no “dangling-pointer

dereferences”): If the space has been reused for another object,

this will lead to crashes or silent data corruptions. Very

expensive to detect at run-time.

• No space leaks: If we do not reclaim enough, we may occupy

much more space than we need.

If you could return a reference to the space occupied by a local

variable, this could also lead to a dangling-pointer dereference.

The “traditional” definition of a space-leak uses a key idea in

memory management: reachability...

Hal Perkins CSE341 Spring 2011, Lecture 26 4



'

&

$

%

Reachability

Whether specified or not, most languages have a notion of

reachability:

• Globals (top-level bindings / classes / static fields) are

reachable.

• Local variables from function/method calls that haven’t

returned are reachable (i.e, the stack is reachable).

• Any object referred to by something reachable is reachable.

– Including objects bound to free variables in closures

(see homework 5 challenge problem)

• Nothing else is reachable.

Hal Perkins CSE341 Spring 2011, Lecture 26 5



'

&

$

%

Automatically Determining Reachability

Informally, it’s easy to imagine an algorithm to find what’s

reachable:

• “Crawl the stack and globals” to get roots

• Keep recurring by following all fields of reachable objects

• Don’t recur on objects already seen (cycles)

In practice, crawling the stack and finding fields requires intimate

knowledge of a language implementation.

Hal Perkins CSE341 Spring 2011, Lecture 26 6



'

&

$

%

Space Leaks

In a language with manual memory management, a “space leak”

typically refers to “unreachable heap objects that have not been

reclaimed”.

After all, they will never be reclaimed (no way to pass them to

free).

Since a garbage-collector reclaims unreachable objects, many

people say “a language with GC cannot have space leaks”.

While technically true with the right definitions, it’s misleading:

For a broader view of “space leak” (not enough reclaimed) it’s a lie!

Example: Store a huge data structure in a static field of a Java

class. Never access that field again.

This is the extreme case of drag : The time between an object’s last

access and its reclamation.

Hal Perkins CSE341 Spring 2011, Lecture 26 7



'

&

$

%

Space Leaks in GC’d Languages

Mostly, if an object is reachable, a GC won’t reclaim it.

• In practice, good systems can ignore some “stack roots” but

few if any do anything smart for globals.

Options for the programmer:

• Ignore the problem; it usually doesn’t come up.

• Set fields to null when you’re done with them. (Problem:

Back to manual management, but at least you get a

NullPointerException)

• Take care not to let “permanent” data grow too big.

(Potentially bad example: memoization tables)

• Use a little-known language feature: “weak pointers”

Hal Perkins CSE341 Spring 2011, Lecture 26 8



'

&

$

%

Weak Pointers

• A weak pointer does not make pointed-to objects reachable.

• But following a weak pointer requires a run-time check.

• This may reclaim too much, but not too little.

• Modest slowdown to garbage collection.

Hal Perkins CSE341 Spring 2011, Lecture 26 9



'

&

$

%

How’s the magic work?

Production-quality GC’s are very sophisticated and use lots of

tricks to:

• run fast

• reduce “pause times”

• make allocation fast (e.g., allocate from contiguous buffer)

• minimize fragmentation

Today we’ll just sketch the simplest versions of two basic

approaches.

But first: why do “pause times” matter

• Soft deadlines: Humans don’t like “temporary freezes”

• Hard deadlines: Medical/air-traffic/nuclear equipment doesn’t

like “I’ll handle that input when I’m done garbage-collecting”

Hal Perkins CSE341 Spring 2011, Lecture 26 10



'

&

$

%

(Semispace) Copying Collection

• Divide memory into two equal-size contiguous pieces.

• Allocate objects in one-space until it’s full (easy and fast).

• We now have a full from-space and an empty to-space.

• Copy the reachable objects into to-space.

• Restart the “real program” (called the mutator), allocating

into the partially full to-space.

• The old from-space is empty—it’s the new to-space.

Note: The GC uses “header words” (e.g., class pointers) to figure

out where the fields pointing to other objects are.

Hal Perkins CSE341 Spring 2011, Lecture 26 11



'

&

$

%

Wait A Minute

We skimmed over two very important details!

• We moved objects; that means we better change any references

to those objects too!

• Our recursive procedure for copying reachable objects better

not use space we don’t have! (GC during GC not an option.)

Solutions:

• A Cheney queue: Two pointers into to-space all we need to

keep track of what needs to be recursively traversed.

• Forwarding pointers: We can use space in the old objects to

record where they moved to. (Use to update fields and not

follow cycles.)

Hal Perkins CSE341 Spring 2011, Lecture 26 12



'

&

$

%

Mark-Sweep Collection

• Allocate objects until you (almost) fill the space you have.

• Mark: Starting from the roots, find all reachable objects. Mark

them (set a bit in the header word). Don’t recur on

already-marked objects.

• Sweep: Scan through memory. If an object is unmarked,

reclaim it. Otherwise, unset the bit (or next GC can’t reclaim

it).

Note:

• We don’t need 2x more space

• No objects move, no fields get changed.

Hal Perkins CSE341 Spring 2011, Lecture 26 13



'

&

$

%

Wait Another Minute

• In practice, if more than about 2/3 of memory ends up marked,

you’ll GC too often (slow program).

• Allocation isn’t nearly as simple:

– We need to find some space big enough for the object.

– Can make “free lists”, but want to “segregate them by size”

– Fragmentation can lead to memory exhaustion before a

copying collector would.

• Our recursive procedure for copying reachable objects better

not use space we don’t have! (Cheney queue won’t work.)

– Can use some auxiliary space to remember “objects to recur

on” and pull clever tricks if this space fills up.

– Can use really clever “Deutsch-Schorr-Waite” algorithm to

“reverse” pointers temporarily while recurring.

Hal Perkins CSE341 Spring 2011, Lecture 26 14



'

&

$

%

Generational Collectors
Observation: In most programs, most objects live a very short

time, a small percentage of them live much longer.

Idea: divide the heap into subheaps or generations

• New objects are allocated from the new part of the heap.

• Old objects live in the old part of the heap.

• Routine collections scavenge the new heap only.

• Objects in the new part of the heap that survive multiple

collections are moved to the old part.

• Occasionally collect the entire heap to reclaim long-lived

objects that are no longer reachabe.

Result: routine collections have a higher yield with less work but

all unreachable objects are reclaimed eventually.

Hal Perkins CSE341 Spring 2011, Lecture 26 15



'

&

$

%

To Learn More

An excellent survey paper:

Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In

International Workshop on Memory Management, St. Malo,

France, September 1992

Hal Perkins CSE341 Spring 2011, Lecture 26 16


