
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 28— Course Wrap-Up

Hal Perkins CSE341 Spring 2011, Lecture 28 1



'

&

$

%

Goals for today

• Describe some things we didn’t get to

– Not on the final

• Review some key concepts/principles we studied

– And put them in context

Hal Perkins CSE341 Spring 2011, Lecture 28 2



'

&

$

%

If we had another OO lecture

class C {

void m(A a, B b);

void m(E e, F f);

void m(F f, E e);

}

How to resolve a call e0.m(e1,e2).

• Static overloading: Use the (compile-time) type of e1 and e2.

• Multimethods: Use the (run-time) class of what e1 and e2

evaluate to.

Java/C++ have static overloading.

Both semantics can have “no best match” errors since there may be

multiple methods that “match” but using different subsumptions.

Hal Perkins CSE341 Spring 2011, Lecture 28 3



'

&

$

%

What else?

Are all programming languages imperative, OO, or FP? No.

• Logic languages (e.g., Prolog)

• Scripting languages (Perl, Python, Ruby (as typically used))

• Query languages (SQL)

• Purely functional languages (no ref or set!)

• Visual languages, spreadsheet languages, GUI-builders,

text-formatters, hardware-synthesis, ...

• And most languages now have support for parallel

programming

Hal Perkins CSE341 Spring 2011, Lecture 28 4



'

&

$

%

Prolog in one example

append(nil, Lst2, Lst2).

append(cons(Hd,Tl), Lst2, cons(Hd,Tl2)) :=

append(Tl, Lst2, Tl2).

append(cons(1, cons(2, nil)), cons(3, cons(4, nil)), X)

% X = cons(1,cons(2,cons(3,cons(4,nil))))

append(cons(1, nil), cons(2,nil), cons(1, cons(2, nil)))

% yes

append(nil, cons(2,nil), cons(1, cons(2, nil)))

% no

append(cons(Hd,nil), Y, cons(1, cons(2, cons(3, nil))) )

% Hd = 1 Y = cons(2,cons(3,nil))

Hal Perkins CSE341 Spring 2011, Lecture 28 5



'

&

$

%

Prolog key ideas

• A program is a set of declarative proof rules.

• Operationally, it’s like a function that doesn’t distinguish

inputs from outputs.

• The implementation searches for the minimal constraints

necessary for a formula to be true.

• Different “queries” can run “forward” or “backward”

• This is Turing-complete; killer app is inherently search-oriented

tasks, which are common in AI.

Hal Perkins CSE341 Spring 2011, Lecture 28 6



'

&

$

%

Scripting Languages

Few “new” language constructs, but convenience for some

quick-and-dirty programs.

• File-system access very lightweight

• Lots of support for string-processing via regular expressions (a

different “pattern-matching”)

• Tend to have very few “errors” (array resizing, implicit variable

declaration, etc.)

Opinion:

• A fine tool for small tasks

• They tend to hide bugs rather than prevent them

• But you should learn to automate repetitive tasks!

Hal Perkins CSE341 Spring 2011, Lecture 28 7



'

&

$

%

Query Languages

Canonical example: Suppose there’s a big database and many

people need data from it. We could make lots of copies or let

people submit queries.

Key idea: Move the code to the data, not the data to the code.

Interestingly: We do not necessarily want the query language to be

as powerful as a Turing-machine!

SQL was carefully designed so every query terminates.

Hal Perkins CSE341 Spring 2011, Lecture 28 8



'

&

$

%

Purely Functional Languages

Example: Haskell

To make life without refs palatable, the default is “lazy”

(call-by-need) evaluation.

One-line example: let ones = 1::ones

Laziness can lead to elegant programming and really increases the

number of equivalent programs. In Haskell, (f x) + (f x) and

(f x) * 2 are contextually equivalent, always.

• Haskell does have monads, which allow a more imperative style.

• The implementation of laziness uses mutation, but in a

controlled way (we did this in Scheme).

Hal Perkins CSE341 Spring 2011, Lecture 28 9



'

&

$

%

Parallelism

(As now discussed in 332/451, but it’s a PL topic also), sometimes

you want multiple call stacks:

• For performance (especially with multicore)

• For structuring an application

The key questions are how to thread communicate and how do they

synchronize.

Easily a course in itself to learn different parallel programming

models.

Hal Perkins CSE341 Spring 2011, Lecture 28 10



'

&

$

%

Continuations

• “First-class call stacks”

• Powerful enough to code up exception handling and certain

kinds of threads

– Can “reenter” a “finished” call-stack (implementation must

copy)

• A (too)-powerful feature

Hal Perkins CSE341 Spring 2011, Lecture 28 11



'

&

$

%

But we still did a lot
A thorough understanding of higher-order programming, variable

scope, semantics of FP and OO, important idioms, static typing, ...

Oh, and you learned a healthy amount of 3 new languages.

Hopefully:

• The time you need to “pick up” a language will drop

dramatically (though you have to learn big libraries too)

• You will use mutation for what it’s good for and not to create

brittle programs with lots of unseen dependencies

• Understand syntax matters, but it’s not that interesting

• Apply idioms in languages other than where you learned them

• Recognize language-design is hard and semantics should not be

treated lightly

Hal Perkins CSE341 Spring 2011, Lecture 28 12



'

&

$

%

Top 12 Concepts?

1. Code evaluates in environments – scope/resolution matters

2. Recursive data is processed with recursive functions

3. Without mutation, copying vs. aliasing is indistinguishable

4. Closures have many powerful uses

5. Each-of vs. one-of

6. (Dis)Advantages of static typing – (and what is checked)

7. When evaluation occurs is important (see thunking/macros)

8. OO vs. FP: many similarities and a couple big differences

9. Parametric polymorphism vs. subtyping

10. Function-argument subtyping is contravariant

11. Can embed a language in another via constructors and

interpreters

12. Languages themselves are rich recursive definitions

Hal Perkins CSE341 Spring 2011, Lecture 28 13



'

&

$

%

Context

In most courses and jobs, a programming language is just a means

to an end (and only one of many means).

This course was perhaps your one chance to study languages as

designs that are themselves fascinating, beautiful, and sometimes

awkward

• And there’s much more to learn (441?)

I believe this makes you a better programmer, even if the rest of

your life is spent in Java and C (which it won’t be)

Hal Perkins CSE341 Spring 2011, Lecture 28 14


