CSE 341:
Programming Languages

Hal Perkins
Spring 2011
Lecture 28— Course Wrap-Up

-

Hal Perkins CSE341 Spring 2011, Lecture 28



/Goals for today

-

e Describe some things we didn’t get to

— Not on the final

e Review some key concepts/principles we studied

— And put them in context

Hal Perkins CSE341 Spring 2011, Lecture 28




/If we had another OQ lecture \

class C {
void m(A a, B b);
void m(E e, F f);
void m(F f, E e);

+

How to resolve a call e0.m(el,e2).
e Static overloading: Use the (compile-time) type of el and e2.

e Multimethods: Use the (run-time) class of what el and e2

evaluate to.

Java/C++ have static overloading.

Both semantics can have “no best match” errors since there may be

/

multiple methods that “match” but using different subsumptions.

N

Hal Perkins CSE341 Spring 2011, Lecture 28 3



/\N hat else?

~

-

Are all programming languages imperative, OO, or FP? No.

Logic languages (e.g., Prolog)

Scripting languages (Perl, Python, Ruby (as typically used))
Query languages (SQL)

Purely functional languages (no ref or set!)

Visual languages, spreadsheet languages, GUI-builders,
text-formatters, hardware-synthesis, ...

And most languages now have support for parallel

programming

Hal Perkins CSE341 Spring 2011, Lecture 28 4



/Prolog in one example \

append(nil, Lst2, Lst2).
append (cons(Hd,T1), Lst2, cons(Hd,T1l2)) :=
append (T1, Lst2, T12).

append(cons(1, cons(2, nil)), cons(3, cons(4, nil)), X)
% X = cons(1l,cons(2,cons(3,cons(4,nil))))

append(cons(1, nil), cons(2,nil), cons(1l, cons(2, nil)))
% yes

append(nil, cons(2,nil), cons(l, cons(2, nil)))

% no

append(cons(Hd,nil), Y, cons(1l, cons(2, cons(3, nil))) )
% Hi =1 Y = cons(2,cons(3,nil))

- /

Hal Perkins CSE341 Spring 2011, Lecture 28 5




/Prolog key ideas \

-

A program is a set of declarative proof rules.

Operationally, it’s like a function that doesn’t distinguish

inputs from outputs.

The implementation searches for the minimal constraints

necessary for a formula to be true.
Different “queries” can run “forward” or “backward”

This is Turing-complete; killer app is inherently search-oriented
tasks, which are common in Al

/

Hal Perkins CSE341 Spring 2011, Lecture 28 6



/Scripting Languages \

Few “new” language constructs, but convenience for some

quick-and-dirty programs.
e File-system access very lightweight

e Lots of support for string-processing via regular expressions (a

different “pattern-matching”)

e Tend to have very few “errors” (array resizing, implicit variable

declaration, etc.)
Opinion:
e A fine tool for small tasks

e They tend to hide bugs rather than prevent them

e But you should learn to automate repetitive tasks!

- /

Hal Perkins CSE341 Spring 2011, Lecture 28 7



/Query Languages \

Canonical example: Suppose there’s a big database and many

people need data from it. We could make lots of copies or let

people submit queries.
Key idea: Move the code to the data, not the data to the code.

Interestingly: We do not necessarily want the query language to be

as powerful as a Turing-machine!

SQL was carefully designed so every query terminates.

- /

Hal Perkins CSE341 Spring 2011, Lecture 28 8




/Purely Functional Languages \

Example: Haskell

To make life without refs palatable, the default is “lazy”

(call-by-need) evaluation.
One-line example: let ones = 1::ones

Laziness can lead to elegant programming and really increases the
number of equivalent programs. In Haskell, (f x) + (f x) and

(f x) *x 2 are contextually equivalent, always.
e Haskell does have monads, which allow a more imperative style.

e The implementation of laziness uses mutation, but in a

controlled way (we did this in Scheme).

- /

Hal Perkins CSE341 Spring 2011, Lecture 28 9




/Parallelism \

(As now discussed in 332/451, but it’s a PL topic also), sometimes

you want multiple call stacks:
e For performance (especially with multicore)
e For structuring an application

The key questions are how to thread communicate and how do they

synchronaize.

Easily a course in itself to learn different parallel programming

models.

- /

Hal Perkins CSE341 Spring 2011, Lecture 28 10




/Continuations

~

-

e “First-class call stacks”

e Powerful enough to code up exception handling and certain
kinds of threads

— Can “reenter” a “finished” call-stack (implementation must

copy)

e A (too)-powerful feature

Hal Perkins CSE341 Spring 2011, Lecture 28 11



/But we still did a lot \

A thorough understanding of higher-order programming, variable

scope, semantics of FP and OO, important idioms, static typing, ...
Oh, and you learned a healthy amount of 3 new languages.
Hopetully:

e The time you need to “pick up” a language will drop

dramatically (though you have to learn big libraries too)

e You will use mutation for what it’s good for and not to create

brittle programs with lots of unseen dependencies
e Understand syntax matters, but it’s not that interesting
e Apply idioms in languages other than where you learned them

e Recognize language-design is hard and semantics should not be

\\ treated lightly /

Hal Perkins CSE341 Spring 2011, Lecture 28 12




/T op 12 Concepts?

~

—_
—_ O

€

© 0N o otk W=

Code evaluates in environments — scope/resolution matters
Recursive data is processed with recursive functions
Without mutation, copying vs. aliasing is indistinguishable
Closures have many powerful uses

Each-of vs. one-of

(Dis) Advantages of static typing — (and what is checked)
When evaluation occurs is important (see thunking/macros)
OO vs. FP: many similarities and a couple big differences
Parametric polymorphism vs. subtyping

Function-argument subtyping is contravariant

. Can embed a language in another via constructors and

interpreters

. Languages themselves are rich recursive definitions

/

Hal Perkins CSE341 Spring 2011, Lecture 28 13



/Context \

In most courses and jobs, a programming language is just a means

to an end (and only one of many means).

This course was perhaps your one chance to study languages as
designs that are themselves fascinating, beautiful, and sometimes

awkward
e And there’s much more to learn (4417)

I believe this makes you a better programmer, even if the rest of

your life is spent in Java and C (which it won’t be)

- /

Hal Perkins CSE341 Spring 2011, Lecture 28 14




