
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 5— Pattern-matching, one-argument functions,

tail-recursion, accumulators

Hal Perkins CSE341 Spring 2011, Lecture 5 1

'

&

$

%

Review: datatypes and pattern-matching

Evaluation rules for datatype bindings and case expressions:

datatype t = C1 of t1 | C2 of t2 | ... | Cn of tn

Adds constructors Ci where Ci v is a value (and Ci has type ti->t).

case e of p1 => e1 | p2 => e2 | ... | pn => en

• Evaluate e to v

• If pi is the first pattern to match v, then result is evaluation of ei

in environment extended by the match.

• If C is a constructor of type t1 * ... * tn -> t, then

C(x1,...,xn) is a pattern that matches C(v1,...,vn) and the

match extends the environment with x1 to v1 ... xn to vn.

• Coming soon: more kinds of patterns.

Hal Perkins CSE341 Spring 2011, Lecture 5 2

'

&

$

%

Expression trees

datatype arith_exp = Constant of int

| Negate of arith_exp

| Add of arith_exp * arith_exp

Think of values of type arith_exp as trees where nodes are

• Constant with one int child

• Negate with one child that can be any arith_exp tree.

• Add with two children that can be any arith_exp trees.

In general, a type describes a set of values, which are often trees.

One-of types give you different variants for nodes.

Constructors evaluate arguments to values (trees) and create bigger

values (i.e., taller trees).

Hal Perkins CSE341 Spring 2011, Lecture 5 3

'

&

$

%

Where we’re going

So far, case gives us what we need to use datatypes:

• A (combined) way to test variants and extract values

In fact, pattern-matching is far more general and elegant:

• Can use it for datatypes already in the top-level environment

(e.g., lists and options and bools)

• Can use it for each-of types (today)

• Can have deep (nested) patterns (next time)

Hal Perkins CSE341 Spring 2011, Lecture 5 4

'

&

$

%

Why patterns?

Even without more pattern forms, this design has advantages over

functions for “testing and destructing” (e.g., null, hd, and tl):

• easier to check for missing and redundant cases

• more concise syntax by combining “test, destruct, and bind”

• you can easily define testing and destructing in terms of

pattern-matching

In fact, case expressions are the preferred way to test variants and

extract values for all of ML’s “one-of” types, including predefined ones

([] and :: just funny syntax).

So: Don’t use functions hd, tl, null, isSome, valOf on homework 2

Teaser: These functions are useful for passing to other functions

Hal Perkins CSE341 Spring 2011, Lecture 5 5

'

&

$

%

Tuple/record patterns

You can also use patterns to extract fields from tuples and records:

pattern {f1=x1, ..., fn=xn} (or (x1,...,xn)) matches

{f1=v1, ..., fn=vn} (or (v1,...,vn)).

For record-patterns, field-order does not matter.

This is better style than #1 and #foo, and it means you do not (ever)

need to write function-argument types.

Instead of a case with one pattern, better style is a pattern directly in

a val binding.

• Or a function argument, which is what we have been doing the

whole time with (allegedly) multi-argument functions!

Hal Perkins CSE341 Spring 2011, Lecture 5 6

'

&

$

%

Now where are we

Could use a short break from pattern-matching

• Deep (nested) patterns on Friday (along with course motivation)

Rest of today: Tail recursion, accumulators, function-call efficiency

Section tomorrow: Some key features that will come up in minor ways

on homework 2:

• type synonyms (e.g., type card = suit * rank)

• ’a and ’’a types and one type being “more general than

another” (full lecture on polymorphism later)

• using = for comparing tuples and datatypes

• creating and raising (a.k.a. throwing) exceptions

Hal Perkins CSE341 Spring 2011, Lecture 5 7

'

&

$

%

Recursion

You should now have the hang of recursion:

• It’s no harder than using a loop (whatever that is)

• It’s much easier when you have multiple recursive calls

(e.g., with functions over trees)

But there are idioms you should learn for elegance, efficiency, and

understandability.

Today: using an accumulator.

Hal Perkins CSE341 Spring 2011, Lecture 5 8

'

&

$

%

Accumulator lessons

• Accumulators can reduce the depth of recursive calls that are not

tail calls

• Key idioms:

– Non-accumulator: compute recursive results and combine

– Accumulator: use recursive result as new accumulator

– The base case becomes the initial accumulator

You will use recursion in non-functional languages—this lesson still

applies.

Hal Perkins CSE341 Spring 2011, Lecture 5 9

'

&

$

%

Tail calls

If the result of f(x) is the “immediate result” for the enclosing

function body, then f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function-call arguments are not in tail position.

• ...

Hal Perkins CSE341 Spring 2011, Lecture 5 10

'

&

$

%

So what?

Why does this matter?

• Implementation takes space proportional to depth of function calls

(“call stack” must “remember what to do next”)

• But in functional languages, implementation must ensure tail calls

eliminate the caller’s space

• Accumulators are a systematic way to make some functions tail

recursive

• “Self” tail-recursive is very loop-like because space does not grow

Hal Perkins CSE341 Spring 2011, Lecture 5 11

