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CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 6— Nested pattern-matching; course motivation
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Patterns

What we know:

• case-expresssions do pattern-matching to choose branch

• val-bindings and fun-arguments also do pattern-matching

– All functions take one argument

• Can match datatypes (including lists, options) and records

(including tuples)

The full story is more general — patterns are much richer than we

have let on.
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Deep patterns

The full definition of pattern-matching is recursive, processing the

matched-on value and the pattern together.

A pattern can be:

• A variable (matches everything, introduces a binding)

• _ (matches everything, no binding)

• A constructor C (matches value C, if C carries no data)

• A constructor and a pattern (e.g., C p) (matches a value if the

value “is a C” and p matches the value it carries)

• A pair of patterns ((p1,p2)) (matches a pair if p1 matches the

first component and p2 matches the second component)

• A record pattern...

• ...
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Can you handle the truth?

It’s really:

• case e of p1 => e1 | ... | pn => en

• val p = e

• fun f p1 = e1 | f p2 = e2 ... | f pn = en

Inexhaustive matches may raise exceptions and are bad style.

Example: could write pattern Add pr or Add (e1,e2)

Again: The definition of pattern-matching is recursive over the

value-being-matched and the pattern.

_ and binding a variable are just base cases.
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Some function examples

• fun f1 () = 34

• fun f2 = 34

• fun f3 (x,y) = x + y

• fun f4 pr = let val (x,y) = pr in x + y end

Is there any difference to callers between f3 and f4?

In most languages, “argument lists” are syntactically separate,

second-class constructs.

Can be useful: f3 (if e1 then (3,2) else pr)

• (We discussed this on Wednesday too.)

See lec6.sml for a few examples where nested patterns are quite nice.
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Course Motivation

I owe you an answer to why 341 has material worth learning.

1. Why learn programming languages that are quite different from

Java, C, C++?

2. Why learn the fundamental concepts that appear in all (most?)

programming languages?

3. Why focus on functional programming (avoiding mutation,

embracing recursion, and writing functions that take/return other

functions)?
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A couple questions...

What’s the best car?

What are the best kind of shoes?

What is the correct house?
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Aren’t all languages the same?

Yes: Any input-output behavior you can program in language X you

can program in language Y

• Java, ML, and a language with one loop and three infinitely-large

integers are “equal”

• This is called the “Turing tarpit”

Yes: Certain fundamentals appear in most languages (variables,

abstraction, one-of types, recursive definitions, ...)

• Travel to learn more about where you’re from

• ML, Scheme, Ruby well-suited for letting these fundamentals shine

No: Most cars have 4 tires, 2 headlights, ...

• Mechanics learn general principles and what’s different
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Aren’t the semantics my least concern?

Admittedly, there are many important considerations:

• What libraries are available?

• What can get me a summer internship?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Technology leaders affect the answers to these questions.

Sound reasoning about programs, interfaces, and compilers requires

knowledge of semantics.

And there is a place in universities for learning deep truths and

beautiful insights as an end in itself. (Like watching Hamlet.)
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Aren’t languages somebody else’s problem?

If you design an extensible software system, you’ll end up designing a

(small?) programming language!

Examples: VBScript, JavaScript, PHP, ASP, QuakeC, Renderman,

bash, AppleScript, emacs, Eclipse, AutoCAD, ...
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Functional programming

Okay, so why ML and Scheme where:

• Mutation is discouraged

• Datatype-based one-of types

• Higher-order functions (next week)

Because:

1. These features are invaluable for correct, elegant, efficient

software (great way to think about computation).

2. Functional languages have a history of being ahead of their time

3. They are well-suited to where computing is going (multicore and

data centers)

Much of the course is (1), so let’s give an infomercial for (2) and (3)...
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Ahead of their time

• Garbage collection (Java didn’t exist in 1995, SML & Scheme did)

• Generics (List<T> in Java, C#), much more like SML than C++

• XML for universal data representation (like Scheme / Lisp)

• Function closures in Python, Ruby, etc.

• Ruby’s iterators lifted from CLU (another “useless language”)

• ...

All features dismissed as, “fine for academics, but will never make it in

the real world”.

• Maybe datatypes or currying or multimethods will be next...

• “Conquering” vs. “assimilation”
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Recent Surge

• F#, C#, LINQ, Scala, Java 8

• Multicore computing (no mutation = easier to parallelize)

• MapReduce / Hadoop (first published in 2004)

• Small companies (Jane Street, Galois, many others)

– And not so small (Ericsson’s Erlang)

– All consider functional programming a key competitive

advantage

∗ In part for hiring smarter people

• Lots of research projects

Note: None of these examples use SML or Scheme, but that’s okay:

think how much you’ve learned in the last 10 days. They are all

informed and influenced by these ideas.
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Summary

There is no such thing as a “best programming language”. (There are

good general design principles we will study.)

A good language is a relevant, crisp, and clear interface for writing

software.

Software leaders should know about programming languages.

Learning languages has super-linear payoff.

• But you have to learn the semantics and idioms, not a cute

syntactic trick for printing “Hello World”.

Functional languages have been on the leading edge for decades, but

ideas get absorbed by the masses slowly.

• Perhaps things are starting to change?

• Even if not, it will make you a better Java/C programmer
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