
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 6— Nested pattern-matching; course motivation

Hal Perkins CSE341 Spring 2011, Lecture 6 1

'

&

$

%

Patterns

What we know:

• case-expresssions do pattern-matching to choose branch

• val-bindings and fun-arguments also do pattern-matching

– All functions take one argument

• Can match datatypes (including lists, options) and records

(including tuples)

The full story is more general — patterns are much richer than we

have let on.

Hal Perkins CSE341 Spring 2011, Lecture 6 2

'

&

$

%

Deep patterns

The full definition of pattern-matching is recursive, processing the

matched-on value and the pattern together.

A pattern can be:

• A variable (matches everything, introduces a binding)

• _ (matches everything, no binding)

• A constructor C (matches value C, if C carries no data)

• A constructor and a pattern (e.g., C p) (matches a value if the

value “is a C” and p matches the value it carries)

• A pair of patterns ((p1,p2)) (matches a pair if p1 matches the

first component and p2 matches the second component)

• A record pattern...

• ...

Hal Perkins CSE341 Spring 2011, Lecture 6 3

'

&

$

%

Can you handle the truth?

It’s really:

• case e of p1 => e1 | ... | pn => en

• val p = e

• fun f p1 = e1 | f p2 = e2 ... | f pn = en

Inexhaustive matches may raise exceptions and are bad style.

Example: could write pattern Add pr or Add (e1,e2)

Again: The definition of pattern-matching is recursive over the

value-being-matched and the pattern.

_ and binding a variable are just base cases.

Hal Perkins CSE341 Spring 2011, Lecture 6 4

'

&

$

%

Some function examples

• fun f1 () = 34

• fun f2 = 34

• fun f3 (x,y) = x + y

• fun f4 pr = let val (x,y) = pr in x + y end

Is there any difference to callers between f3 and f4?

In most languages, “argument lists” are syntactically separate,

second-class constructs.

Can be useful: f3 (if e1 then (3,2) else pr)

• (We discussed this on Wednesday too.)

See lec6.sml for a few examples where nested patterns are quite nice.

Hal Perkins CSE341 Spring 2011, Lecture 6 5

'

&

$

%

Course Motivation

I owe you an answer to why 341 has material worth learning.

1. Why learn programming languages that are quite different from

Java, C, C++?

2. Why learn the fundamental concepts that appear in all (most?)

programming languages?

3. Why focus on functional programming (avoiding mutation,

embracing recursion, and writing functions that take/return other

functions)?

Hal Perkins CSE341 Spring 2011, Lecture 6 6

'

&

$

%

A couple questions...

What’s the best car?

What are the best kind of shoes?

What is the correct house?

Hal Perkins CSE341 Spring 2011, Lecture 6 7

'

&

$

%

Aren’t all languages the same?

Yes: Any input-output behavior you can program in language X you

can program in language Y

• Java, ML, and a language with one loop and three infinitely-large

integers are “equal”

• This is called the “Turing tarpit”

Yes: Certain fundamentals appear in most languages (variables,

abstraction, one-of types, recursive definitions, ...)

• Travel to learn more about where you’re from

• ML, Scheme, Ruby well-suited for letting these fundamentals shine

No: Most cars have 4 tires, 2 headlights, ...

• Mechanics learn general principles and what’s different

Hal Perkins CSE341 Spring 2011, Lecture 6 8

'

&

$

%

Aren’t the semantics my least concern?

Admittedly, there are many important considerations:

• What libraries are available?

• What can get me a summer internship?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Technology leaders affect the answers to these questions.

Sound reasoning about programs, interfaces, and compilers requires

knowledge of semantics.

And there is a place in universities for learning deep truths and

beautiful insights as an end in itself. (Like watching Hamlet.)

Hal Perkins CSE341 Spring 2011, Lecture 6 9

'

&

$

%

Aren’t languages somebody else’s problem?

If you design an extensible software system, you’ll end up designing a

(small?) programming language!

Examples: VBScript, JavaScript, PHP, ASP, QuakeC, Renderman,

bash, AppleScript, emacs, Eclipse, AutoCAD, ...

Hal Perkins CSE341 Spring 2011, Lecture 6 10

'

&

$

%

Functional programming

Okay, so why ML and Scheme where:

• Mutation is discouraged

• Datatype-based one-of types

• Higher-order functions (next week)

Because:

1. These features are invaluable for correct, elegant, efficient

software (great way to think about computation).

2. Functional languages have a history of being ahead of their time

3. They are well-suited to where computing is going (multicore and

data centers)

Much of the course is (1), so let’s give an infomercial for (2) and (3)...

Hal Perkins CSE341 Spring 2011, Lecture 6 11

'

&

$

%

Ahead of their time

• Garbage collection (Java didn’t exist in 1995, SML & Scheme did)

• Generics (List<T> in Java, C#), much more like SML than C++

• XML for universal data representation (like Scheme / Lisp)

• Function closures in Python, Ruby, etc.

• Ruby’s iterators lifted from CLU (another “useless language”)

• ...

All features dismissed as, “fine for academics, but will never make it in

the real world”.

• Maybe datatypes or currying or multimethods will be next...

• “Conquering” vs. “assimilation”

Hal Perkins CSE341 Spring 2011, Lecture 6 12

'

&

$

%

Recent Surge

• F#, C#, LINQ, Scala, Java 8

• Multicore computing (no mutation = easier to parallelize)

• MapReduce / Hadoop (first published in 2004)

• Small companies (Jane Street, Galois, many others)

– And not so small (Ericsson’s Erlang)

– All consider functional programming a key competitive

advantage

∗ In part for hiring smarter people

• Lots of research projects

Note: None of these examples use SML or Scheme, but that’s okay:

think how much you’ve learned in the last 10 days. They are all

informed and influenced by these ideas.

Hal Perkins CSE341 Spring 2011, Lecture 6 13

'

&

$

%

Summary

There is no such thing as a “best programming language”. (There are

good general design principles we will study.)

A good language is a relevant, crisp, and clear interface for writing

software.

Software leaders should know about programming languages.

Learning languages has super-linear payoff.

• But you have to learn the semantics and idioms, not a cute

syntactic trick for printing “Hello World”.

Functional languages have been on the leading edge for decades, but

ideas get absorbed by the masses slowly.

• Perhaps things are starting to change?

• Even if not, it will make you a better Java/C programmer

Hal Perkins CSE341 Spring 2011, Lecture 6 14

