CSE 341, Spring 2008, Lecture 6 Summary

Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of
all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture covers two topics:

e It completes our investigation of pattern-matching by giving the full definition of pattern-matching,
which allows for nested patterns (patterns inside patterns). It shows several examples where nested
pattern-matching is particularly elegant.

e It motivates why one should study programming languages, particularly functional programming lan-
guages. Most courses have this discussion in the first lecture, but it can make much more sense after
having seen some basic functional programming.

So far, we have said all patterns look like C1 or C2(x1,...,xn) or {fi=x1,...,fn=xn} or (x1,...,xn)
where C1 and C2 are constructors and the fi are field names. These are all patterns, and we have learned
when they match a value and what bindings they introduce when the match is successful. However, it turns
out that where we have been putting variables in our patterns we can also put other patterns, which leads
to an elegant recursive definition of pattern-matching. Here are some parts of the recursive definition:

e A variable pattern (x) matches any value v and introduces one binding (from x to v).

e A wildcard pattern (_) matches any value v and introduces no bindings.

The pattern C matches the value C, if C is a constructor that carries no data.

The pattern C p where C is a constructor and p is a pattern matches a value of the form C v (notice
the constructors are the same) if p matches v (i.e., the nested pattern matches the carried value).

The pattern (p1,p2) matches a pair of values (v1,v2) if pl matches vl and p2 matches v2.

This recursive definition extends our previous understanding in two interesting ways. First, for a con-
structor C that carries multiple arguments, we do not have to write patterns like C(x1,...,xn) though we
often do. We could also write C x; this would bind x to the tuple that the value C(v1,...,vn) carries. What
is really going on is that all constructors take 0 or 1 arguments, but the 1 argument can itself be a tuple.
So C(x1,...,xn) is really a nested pattern where the (x1,...,xn) part is just a pattern that matches all
tuples with n parts.

Second, and more importantly, we can use nested patterns instead of nested case expressions when we
want to match only values that have a certain “shape.” For example, the pattern x::(y::z) would match
all lists that have at least 2 elements, whereas the pattern x: : [J would match all lists that have exactly one
element. Both examples use one constructor pattern inside another one.

The nested patterns can be for different types. For example, the pattern (_, (_,x),_) ::t1 would match
a non-empty list where each element was a triple where the second element was a pair. It would bind the
list’s head’s middle element’s second element to x and the list’s tail to t1.

We considered several examples where nested patterns lead to elegant code, including “zipping” or “un-
zipping” multiple lists, seeing if a list is sorted, and coding a table of outputs by matching against a tuple
of inputs. This silly example of the last idiom computes the sign that would result from multiplying two
numbers (without actually doing the multiplication).

datatype sign =P | N | Z

fun multsign (x1,x2) =
let fun sign x = if x=0 then Z else if x>0 then P else N
in



case (sign x1,sign x2) of

(z,.) => 17
| (_,2) => Z
| (P,P) =>P
| (N,N) =>P
| => N

end

Ending a case-expression with the pattern _, which matches everything, is somewhat controversial style. The
type-checker certainly won’t complain about an inexhaustive match, which can be bad if you actually did
forget some possibly that you are accidentially covering with your “default case.” So more careful coding of
the example above would replace the last case with two cases with patterns (P,N) and (N,P), but the code
as written above is also okay.

Returning to how general pattern-matching is, it turns out that every val-binding and function argument
is really a pattern. So the syntax is actually val p = e and fun f p = e where p is a pattern. In fact, the
textbook and many ML programmers use a form of function-binding where you can have multiple cases by
repeating the function name and using a different pattern:

fun f pl = el
| £ p2 = e2

| f pn =en

This is just syntactic sugar for:

fun f x =
case x of
pl => el
| p2 => e2
| pn => en

Your instructor happens not to be a big fan of the repeated function-name style, but you are welcome to use
it if you are.

Turning our attention to course motivation, we can break the question of, “what is this course good for”
into 3 parts:

1. Why should we learn programming languages other than popular industry ones like Java, C, C++,
Perl, etc.?

2. Why should we learn fundamental concepts that appear in most programming languages, rather than
just learning particular languages?

3. Why should we focus on languages that encourage (mostly) functional programming (i.e., that discour-
age mutation, encourage recursion, and encourage functions that take and return other functions)?

A good analogy is with automobiles. There will never be a best programming language much as there
will never be a best car. Different cars serve different purposes: some go fast, some can go off-road, some are
safer, some have room for a large family, etc. Yet there are remarkable similarities and while drivers or auto
mechanics may have preferences and specialties, they learn enough fundamental principles to work with new
kinds of cars easily. Still, it can be uncomfortable to switch cars, as anyone who has ever had trouble finding
the windshield wipers in a friend’s car can attest.

You should also know that in a very precise sense all programming languages are equally powerful: If you
need to write a program that takes some input X and produces output Y, there is some way to do it Java or
ML or Perl or a ridiculous language where you only have 3 variables and 1 while loop. This equality is often
referred to as the “Turing tarpit” because Alan Turing first advanced the thesis that (roughly speaking)



all languages were equally powerful and “tarpit” because a tarpit is somewhere you get stuck (in this case,
making arguments that some language is great because it can do everything you would want it to).

It is also fair to point out that when choosing a language for a software project, whether the language is
an elegant design that is easy to learn and write correct, concise code in is only one consideration. In the real
world, it also matters what libraries are available, what your boss wants, and whether you can hire enough
developers to do the task. We have the luxury in 341 of ignoring these issues to focus on the fundamental
truths underlying programming langauges. Moreover, learning how to describe what a program means is
very important — there is often no other way to resolve an argument about whether a library user or library
implementor made a mistake, for example.

While it is unlikely you will be involved in designing a new general-purpose programming language like
Java, ML, or C++, it is surprisingly likely that you will end up designing a smaller new language for some
specific project. This happens all the time — whenever some application wants a way for users to extend
its functionality. Editors (like emacs), game engines (like Quake), CAD tools (like AutoCAD), desktop
software (like Microsoft Office), and web browers are all examples (corresponding languages include elisp,
JavaScript, QuakeC, etc.). Seeing a range of programming languages and understanding their essential
design is invaluable.

Though new general-purpose languages do not achieve wide popularity very often (perhaps once a decade),
it does happen. Students who took 341 in the early 1990s were probably better prepared to learn Java after
it was invented than students who studied only C.

Having covered just a few reasons to study programming languages in general, we can focus on why 341
spends most of the course using functional languages, particularly ML and Scheme. The main reason is
that they have many features that are invaluable for writing correct, elegant, and efficient software — and
they encourage a way of thinking about computation that will make you a better programmer even in other
languages. But since these features are the subject of many other lectures, today is a chance to “brag” about
the important role functional languages have played in the past and are likely to play in the future.

One sometimes hears functional languages dismissed as “slow, worthless, beautiful things you have to
learn in school” when they tend to teach exactly the language constructs and concepts that are useful but
“ahead of their time.” Students in 341 learned about garbage collection (not having to manage memory
manually), generics (like Java’s List<T> type), universal data representations (like XML), function closures
(as in Python and Ruby), etc. many years before they were in widely popular languages. One way to
think about it is that functional programming has not “conquered” the programming world, but many of its
features have been “assimilated” and are now widely promoted without functional languages getting much
credit. So it is reasonable to think ideas we will learn like pattern-matching or currying or multimethods
might be next.

In fact, in just the last year, there has been a surprising (even to your instructor) amount of widespread
interest in core ideas of functional programming. Microsoft recently announced it would fully support the
language F# on its .NET platform. F# is a lot like SML. Similarly, the difference between C# 2.0 and
C+# 3.0 is largely support for functional-programming features and other ML-like conveniences (e.g., type
inference). Now that desktop computers are getting parallel processors, more software and languages will
encourage not mutating data, since this makes it much more difficult to do things in parallel. An extreme
example is Google’s MapReduce, which is revolutionizing data-center computing. MapReduce did not exist
5 years ago and is essentially functional programming along the lines we will learn next week built on top of
a fault-tolerant distributed-computing infrastructure.

Beyond these big recent moves, there is actual use of functional languages outside of courses. Several
small companies consider it their “secret to success.” It is also common to use languages like ML in research
projects, even in areas of computer science other than programming languages. For example, the Macah
compiler project in the UW CSE department uses Caml (a dialect of ML) even though much of the project’s
focus is computer architecture.

Some links to this “real-world functional programming” are on the course web-site, but this is just a
small sample.



