
CSE341: Programming Languages

Lecture 25

Subtyping for OOP;

Comparing/Combining Generics and

Subtyping

Dan Grossman

Spring 2013

Now…

Use what we learned about subtyping for records and functions to

understand subtyping for class-based OOP

– Like in Java/C#

Recall:

– Class names are also types

– Subclasses are also subtypes

– Substitution principle: Instance of subclass should usable in

place of instance of superclass

Spring 2013 2 CSE341: Programming Languages

An object is…

• Objects: mostly records holding fields and methods

– Fields are mutable

– Methods are immutable functions that also have access to
self

• So could design a type system using types very much like

record types

– Subtypes could have extra fields and methods

– Overriding methods could have contravariant arguments and

covariant results compared to method overridden

• Sound only because method “slots” are immutable!

Spring 2013 3 CSE341: Programming Languages

Actual Java/C#…

Compare/contrast to what our “theory” allows:

1. Types are class names and subtyping are explicit subclasses

2. A subclass can add fields and methods

3. A subclass can override a method with a covariant return type

– (No contravariant arguments; instead makes it a non-

overriding method of the same name)

(1) Is a subset of what is sound (so also sound)

(3) Is a subset of what is sound and a different choice (adding

method instead of overriding)

Spring 2013 4 CSE341: Programming Languages

Classes vs. Types

• A class defines an object's behavior

– Subclassing inherits behavior and changes it via extension and

overriding

• A type describes an object's methods’ argument/result types

– A subtype is substitutable in terms of its field/method types

• These are separate concepts: try to use the terms correctly

– Java/C# confuse them by requiring subclasses to be subtypes

– A class name is both a class and a type

– Confusion is convenient in practice

Spring 2013 5 CSE341: Programming Languages

Optional: More details

Java and C# are sound: They do not allow subtypes to do things

that would lead to “method missing” or accessing a field at the

wrong type

Confusing (?) Java example:

– Subclass can declare field name already declared by

superclass

– Two classes can use any two types for the field name

– Instance of subclass have two fields with same name

– “Which field is in scope” depends on which class defined the

method

Spring 2013 6 CSE341: Programming Languages

self/this is special

• Recall our Racket encoding of OOP-style

– “Objects” have a list of fields and a list of functions that take
self as an explicit extra argument

• So if self/this is a function argument, is it contravariant?

– No, it is covariant: a method in a subclass can use fields and

methods only available in the subclass: essential for OOP

– Sound because calls always use the “whole object” for self

– This is why coding up your own objects manually works

much less well in a statically typed languages

Spring 2013 7 CSE341: Programming Languages

class A {
 int m(){ return 0; }
}
class B extends A {
 int x;
 int m(){ return x; }
}

What are generics good for?

Some good uses for parametric polymorphism:

• Types for functions that combine other functions:

• Types for functions that operate over generic collections

• Many other idioms

• General point: When types can “be anything” but multiple things

need to be “the same type”

Spring 2013 8 CSE341: Programming Languages

fun compose (g,h) = fn x => g (h x)

(* compose : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)

val length : 'a list -> int

val map : ('a -> 'b) -> 'a list -> 'b list

val swap : ('a * 'b) -> ('b * 'a)

Generics in Java

• Java generics a bit clumsier syntactically and semantically, but

can express the same ideas

– Without closures, often need to use (one-method) objects

– See also earlier optional lecture on closures in Java/C

• Simple example without higher-order functions (optional):

Spring 2013 9 CSE341: Programming Languages

class Pair<T1,T2> {

 T1 x;

 T2 y;

 Pair(T1 _x, T2 _y){ x = _x; y = _y; }

 Pair<T2,T1> swap() {

 return new Pair<T2,T1>(y,x);

 }

 …

}

Subtyping is not good for this

• Using subtyping for containers is much more painful for clients

– Have to downcast items retrieved from containers

– Downcasting has run-time cost

– Downcasting can fail: no static check that container holds

the type of data you expect

– (Only gets more painful with higher-order functions like map)

Spring 2013 10 CSE341: Programming Languages

class LamePair {

 Object x;

 Object y;

 LamePair(Object _x, Object _y){ x=_x; y=_y; }

 LamePair swap() { return new LamePair(y,x); }

}

// error caught only at run-time:

String s = (String)(new LamePair("hi",4).y);

What is subtyping good for?

Some good uses for subtype polymorphism:

• Code that “needs a Foo” but fine to have “more than a Foo”

• Geometry on points works fine for colored points

• GUI widgets specialize the basic idea of “being on the screen”

and “responding to user actions”

Spring 2013 11 CSE341: Programming Languages

Awkward in ML

ML does not have subtyping, so this simply does not type-check:

Cumbersome workaround: have caller pass in getter functions:

– And clients still need different getters for points, color-points

Spring 2013 12 CSE341: Programming Languages

(* {x:real, y:real} -> real *)

fun distToOrigin ({x=x,y=y}) =

 Math.sqrt(x*x + y*y)

val five = distToOrigin {x=3.0,y=4.0,color="red"}

(* ('a -> real) * ('a -> real) * 'a -> real *)

fun distToOrigin (getx, gety, v) =

 Math.sqrt((getx v)*(getx v)

 + (gety v)*(gety v))

Wanting both

• Could a language have generics and subtyping?

– Sure!

• More interestingly, want to combine them

– “Any type T1 that is a subtype of T2”

– Called bounded polymorphism

– Lets you do things naturally you cannot do with generics or

subtyping separately

Spring 2013 13 CSE341: Programming Languages

Example

Method that takes a list of points and a circle (center point, radius)

– Return new list of points in argument list that lie within circle

Basic method signature:

Java implementation straightforward assuming Point has a

distance method:

Spring 2013 14 CSE341: Programming Languages

List<Point> inCircle(List<Point> pts,
 Point center,
 double r) { … }

List<Point> result = new ArrayList<Point>();
for(Point pt : pts)
 if(pt.distance(center) < r)
 result.add(pt);
return result;

Subtyping?

• Would like to use inCircle by passing a List<ColorPoint>

and getting back a List<ColorPoint>

• Java rightly disallows this: While inCircle would “do nothing

wrong” its type does not prevent:

– Returning a list that has a non-color-point in it

– Modifying pts by adding non-color-points to it

Spring 2013 15 CSE341: Programming Languages

List<Point> inCircle(List<Point> pts,
 Point center,
 double r) { … }

Generics?

• We could change the method to be

– Now the type system allows passing in a List<Point> to

get a List<Point> returned or a List<ColorPoint> to

get a List<ColorPoint> returned

– But cannot implement inCircle properly: method body

should have no knowledge of type T

Spring 2013 16 CSE341: Programming Languages

List<Point> inCircle(List<Point> pts,
 Point center,
 double r) { … }

<T> List<T> inCircle(List<T> pts,
 Point center,
 double r) { … }

Bounds

• What we want:

• Caller uses it generically, but must instantiate T with some

subtype of Point (including Point)

• Callee can assume T <: Point so it can do its job

• Callee must return a List<T> so output will contain only

elements from pts

Spring 2013 17 CSE341: Programming Languages

<T> List<T> inCircle(List<T> pts,
 Point center,
 double r) where T <: Point
 { … }

Real Java

• The actual Java syntax:

• Note: For backward-compatibility and implementation reasons,

in Java there is actually always a way to use casts to get around

the static checking with generics

– With or without bounded polymorphism

Spring 2013 18 CSE341: Programming Languages

<T extends Pt> List<T> inCircle(List<T> pts,
 Pt center,
 double r) {
 List<T> result = new ArrayList<T>();
 for(T pt : pts)
 if(pt.distance(center) < r)
 result.add(pt);
 return result;
}

