
CSE341: Programming Languages

Lecture 9

Function-Closure Idioms

Dan Grossman

Spring 2013

More idioms

• We know the rule for lexical scope and function closures

– Now what is it good for

A partial but wide-ranging list:

• Pass functions with private data to iterators: Done

• Combine functions (e.g., composition)

• Currying (multi-arg functions and partial application)

• Callbacks (e.g., in reactive programming)

• Implementing an ADT with a record of functions (optional)

Spring 2013 2 CSE341: Programming Languages

Combine functions

Canonical example is function composition:

• Creates a closure that “remembers” what f and g are bound to

• Type ('b -> 'c) * ('a -> 'b) -> ('a -> 'c)

but the REPL prints something equivalent

• ML standard library provides this as infix operator o

• Example (third version best):

Spring 2013 3 CSE341: Programming Languages

fun compose (f,g) = fn x => f (g x)

fun sqrt_of_abs i = Math.sqrt(Real.fromInt(abs i))

fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

Left-to-right or right-to-left

As in math, function composition is “right to left”

– “take absolute value, convert to real, and take square root”

– “square root of the conversion to real of absolute value”

“Pipelines” of functions are common in functional programming and

many programmers prefer left-to-right

– Can define our own infix operator

– This one is very popular (and predefined) in F#

Spring 2013 4 CSE341: Programming Languages

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

infix |>

fun x |> f = f x

fun sqrt_of_abs i =

 i |> abs |> Real.fromInt |> Math.sqrt

Another example

• “Backup function”

• As is often the case with higher-order functions, the types hint at

what the function does

 ('a -> 'b option) * ('a -> 'b) -> 'a -> 'b

Spring 2013 5 CSE341: Programming Languages

fun backup1 (f,g) =

 fn x => case f x of

 NONE => g x

 | SOME y => y

More idioms

• We know the rule for lexical scope and function closures

– Now what is it good for

A partial but wide-ranging list:

• Pass functions with private data to iterators: Done

• Combine functions (e.g., composition)

• Currying (multi-arg functions and partial application)

• Callbacks (e.g., in reactive programming)

• Implementing an ADT with a record of functions (optional)

Spring 2013 6 CSE341: Programming Languages

Currying

• Recall every ML function takes exactly one argument

• Previously encoded n arguments via one n-tuple

• Another way: Take one argument and return a function that

takes another argument and…

– Called “currying” after famous logician Haskell Curry

Spring 2013 7 CSE341: Programming Languages

Example

• Calling (sorted3 7) returns a closure with:

– Code fn y => fn z => z >= y andalso y >= x

– Environment maps x to 7

• Calling that closure with 9 returns a closure with:

– Code fn z => z >= y andalso y >= x

– Environment maps x to 7, y to 9

• Calling that closure with 11 returns true

Spring 2013 8 CSE341: Programming Languages

val sorted3 = fn x => fn y => fn z =>

 z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

Syntactic sugar, part 1

• In general, e1 e2 e3 e4 …,

 means (…((e1 e2) e3) e4)

• So instead of ((sorted3 7) 9) 11,

 can just write sorted3 7 9 11

• Callers can just think “multi-argument function with spaces instead

of a tuple expression”

– Different than tupling; caller and callee must use same technique

Spring 2013 9 CSE341: Programming Languages

val sorted3 = fn x => fn y => fn z =>

 z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

Syntactic sugar, part 2

• In general, fun f p1 p2 p3 … = e,

 means fun f p1 = fn p2 => fn p3 => … => e

• So instead of val sorted3 = fn x => fn y => fn z => …

or fun sorted3 x = fn y => fn z => …,

can just write fun sorted3 x y z = x >=y andalso y >= x

• Callees can just think “multi-argument function with spaces instead of

a tuple pattern”

– Different than tupling; caller and callee must use same technique

Spring 2013 10 CSE341: Programming Languages

val sorted3 = fn x => fn y => fn z =>

 z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

Final version

As elegant syntactic sugar (even fewer characters than tupling) for:

Spring 2013 11 CSE341: Programming Languages

val sorted3 = fn x => fn y => fn z =>

 z >= y andalso y >= x

val t1 = ((sorted3 7) 9) 11

fun sorted3 x y z = z >= y andalso y >= x

val t1 = sorted3 7 9 11

Curried fold

A more useful example and a call too it

– Will improve call next

Note: foldl in ML standard-library has f take arguments in

opposite order

Spring 2013 12 CSE341: Programming Languages

fun fold f acc xs =

 case xs of

 [] => acc

 | x::xs’ => fold f (f(acc,x)) xs’

fun sum xs = fold (fn (x,y) => x+y) 0 xs

“Too Few Arguments”

• Previously used currying to simulate multiple arguments

• But if caller provides “too few” arguments, we get back a closure

“waiting for the remaining arguments”

– Called partial application

– Convenient and useful

– Can be done with any curried function

• No new semantics here: a pleasant idiom

Spring 2013 13 CSE341: Programming Languages

Example

Spring 2013 14 CSE341: Programming Languages

fun fold f acc xs =

 case xs of

 [] => acc

 | x::xs’ => fold f (f(acc,x)) xs’

fun sum_inferior xs = fold (fn (x,y) => x+y) 0 xs

val sum = fold (fn (x,y) => x+y) 0

 As we already know, fold (fn (x,y) => x+y) 0

evaluates to a closure that given xs, evaluates the case-expression

with f bound to fold (fn (x,y) => x+y) and acc bound to 0

Unnecessary function wrapping

Spring 2013 15 CSE341: Programming Languages

fun sum_inferior xs = fold (fn (x,y) => x+y) 0 xs

val sum = fold (fn (x,y) => x+y) 0

 • Previously learned not to write fun f x = g x

when we can write val f = g

• This is the same thing, with fold (fn (x,y) => x+y) 0 in

place of g

Iterators

• Partial application is particularly nice for iterator-like functions

• Example:

• For this reason, ML library functions of this form usually curried

– Examples: List.map, List.filter, List.foldl

Spring 2013 16 CSE341: Programming Languages

fun exists predicate xs =

 case xs of

 [] => false

 | x::xs’ => predicate x

 orelse exists predicate xs’

val no = exists (fn x => x=7) [4,11,23]

val hasZero = exists (fn x => x=0)

The Value Restriction Appears

If you use partial application to create a polymorphic function, it

may not work due to the value restriction

– Warning about “type vars not generalized”

• And won’t let you call the function

– This should surprise you; you did nothing wrong but you

still must change your code

– See the code for workarounds

– Can discuss a bit more when discussing type inference

Spring 2013 17 CSE341: Programming Languages

More combining functions

• What if you want to curry a tupled function or vice-versa?

• What if a function’s arguments are in the wrong order for the

partial application you want?

Naturally, it is easy to write higher-order wrapper functions

– And their types are neat logical formulas

Spring 2013 18 CSE341: Programming Languages

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

Efficiency

So which is faster: tupling or currying multiple-arguments?

• They are both constant-time operations, so it doesn’t matter in

most of your code – “plenty fast”

– Don’t program against an implementation until it matters!

• For the small (zero?) part where efficiency matters:

– It turns out SML/NJ compiles tuples more efficiently

– But many other functional-language implementations do

better with currying (OCaml, F#, Haskell)

• So currying is the “normal thing” and programmers read
t1 -> t2 -> t3 -> t4 as a 3-argument function that

also allows partial application

Spring 2013 19 CSE341: Programming Languages

More idioms

• We know the rule for lexical scope and function closures

– Now what is it good for

A partial but wide-ranging list:

• Pass functions with private data to iterators: Done

• Combine functions (e.g., composition)

• Currying (multi-arg functions and partial application)

• Callbacks (e.g., in reactive programming)

• Implementing an ADT with a record of functions (optional)

Spring 2013 20 CSE341: Programming Languages

ML has (separate) mutation

• Mutable data structures are okay in some situations

– When “update to state of world” is appropriate model

– But want most language constructs truly immutable

• ML does this with a separate construct: references

• Introducing now because will use them for next closure idiom

• Do not use references on your homework

– You need practice with mutation-free programming

– They will lead to less elegant solutions

Spring 2013 21 CSE341: Programming Languages

References

• New types: t ref where t is a type

• New expressions:

– ref e to create a reference with initial contents e

– e1 := e2 to update contents

– !e to retrieve contents (not negation)

Spring 2013 22 CSE341: Programming Languages

References example

Spring 2013 23 CSE341: Programming Languages

val x = ref 42

val y = ref 42

val z = x

val _ = x := 43

val w = (!y) + (!z) (* 85 *)

(* x + 1 does not type-check *)

• A variable bound to a reference (e.g., x) is still immutable: it will

always refer to the same reference

• But the contents of the reference may change via :=

• And there may be aliases to the reference, which matter a lot

• References are first-class values

• Like a one-field mutable object, so := and ! don’t specify the field

x z y

Callbacks

A common idiom: Library takes functions to apply later, when an

event occurs – examples:

– When a key is pressed, mouse moves, data arrives

– When the program enters some state (e.g., turns in a game)

A library may accept multiple callbacks

– Different callbacks may need different private data with

different types

– Fortunately, a function’s type does not include the types of

bindings in its environment

– (In OOP, objects and private fields are used similarly, e.g.,

Java Swing’s event-listeners)

Spring 2013 24 CSE341: Programming Languages

Mutable state

While it’s not absolutely necessary, mutable state is reasonably

appropriate here

– We really do want the “callbacks registered” to change when

a function to register a callback is called

Spring 2013 25 CSE341: Programming Languages

Example call-back library

Library maintains mutable state for “what callbacks are there” and

provides a function for accepting new ones

– A real library would all support removing them, etc.

– In example, callbacks have type int->unit

So the entire public library interface would be the function for

registering new callbacks:

val onKeyEvent : (int -> unit) -> unit

(Because callbacks are executed for side-effect, they may also

need mutable state)

Spring 2013 26 CSE341: Programming Languages

Library implementation

Spring 2013 27 CSE341: Programming Languages

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f :: (!cbs)

fun onEvent i =

 let fun loop fs =

 case fs of

 [] => ()

 | f::fs’ => (f i; loop fs’)

 in loop (!cbs) end

Clients

Can only register an int -> unit, so if any other data is needed,

must be in closure’s environment

– And if need to “remember” something, need mutable state

Examples:

Spring 2013 28 CSE341: Programming Languages

val timesPressed = ref 0

val _ = onKeyEvent (fn _ =>

 timesPressed := (!timesPressed) + 1)

fun printIfPressed i =

 onKeyEvent (fn j =>

 if i=j

 then print ("pressed " ^ Int.toString i)

 else ())

More idioms

• We know the rule for lexical scope and function closures

– Now what is it good for

A partial but wide-ranging list:

• Pass functions with private data to iterators: Done

• Combine functions (e.g., composition)

• Currying (multi-arg functions and partial application)

• Callbacks (e.g., in reactive programming)

• Implementing an ADT with a record of functions (optional)

Spring 2013 29 CSE341: Programming Languages

Optional: Implementing an ADT

As our last idiom, closures can implement abstract data types

– Can put multiple functions in a record

– The functions can share the same private data

– Private data can be mutable or immutable

– Feels a lot like objects, emphasizing that OOP and functional

programming have some deep similarities

See code for an implementation of immutable integer sets with

operations insert, member, and size

The actual code is advanced/clever/tricky, but has no new features

– Combines lexical scope, datatypes, records, closures, etc.

– Client use is not so tricky

Spring 2013 30 CSE341: Programming Languages

