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Introduction and Some Terms

This unit focuses on first-class functions and function closures. By “first-class” we mean that functions can
be computed, passed, stored, etc. wherever other values can be computed, passed, stored, etc. As examples,
we can pass them to functions, return them from functions, put them in pairs, have them be part of the data
a datatype constructor carries, etc. “Function closures” refers to functions that use variables defined outside
of them, which makes first-class functions much more powerful, as we will see after starting with simpler
first-class functions that do not use this ability. The term higher-order function just refers to a function that
takes or returns other functions.
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Terms like first-class functions, function closures, and higher-order functions are often confused with each
other or considered synonyms. Because so much of the world is not careful with these terms, we will not be
too worried about them either. But the idea of first-class functions and the idea of function closures really
are distinct concepts that we often use together to write elegant, reusable code. For that reason, we will
delay the idea of closures, so we can introduce it as a separate concept.

There is an even more general term, functional programming. This term also is often used imprecisely to
refer to several distinct concepts. The two most important and most common are:

• Not using mutable data in most or all cases: We have avoided mutation throughout the course so far
and will mostly continue to do so.

• Using functions as values, which is what this unit is all about

There are other things that are also considered related to functional programming:

• A programming style that encourages recursion and recursive data structures

• Programming with a syntax or style that is closer to traditional mathematical definitions of functions

• Anything that is not object-oriented programming (this one is really incorrect)

• Using certain programming idioms related to laziness, a technical term for a certain kind of program-
ming construct/idiom we will study, briefly, later in the course

An obvious related question is “what makes a programming language a functional language?” Your instructor
has come to the conclusion this is not a question for which there is a precise answer and barely makes sense
as a question. But one could say that a functional language is one where writing in a functional style (as
described above) is more convenient, more natural, and more common than programming in other styles. At
a minimum, you need good support for immutable data, first-class functions, and function closures. More
and more we are seeing new languages that provide such support but also provide good support for other
styles, like object-oriented programming, which we will study some toward the end of the course.

Taking Functions as Arguments

The most common use of first-class functions is passing them as arguments to other functions, so we motivate
this use first.

Here is a first example of a function that takes another function:

fun n_times (f,n,x) =

if n=0

then x

else f (n_times(f,n-1,x))

We can tell the argument f is a function because the last line calls f with an argument. What n_times does
is compute f(f(...(f(x)))) where the number of calls to f is n. That is a genuinely useful helper function
to have around. For example, here are 3 different uses of it:

fun double x = x+x

val x1 = n_times(double,4,7) (* answer: 112 *)
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fun increment x = x+1

val x2 = n_times(increment,4,7) (* answer: 11 *)

val x3 = n_times(tl,2,[4,8,12,16]) (* answer: [12,16] *)

Like any helper function, n_times lets us abstract the common parts of multiple computations so we can
reuse some code in different ways by passing in different arguments. The main novelty is making one of
those arguments a function, which is a powerful and flexible programming idiom. It also makes perfect sense
— we are not introducing any new language constructs here, just using ones we already know in ways you
may not have thought of.

Once we define such abstractions, we can find additional uses for them. For example, even if our program
today does not need to triple any values n times, maybe tomorrow it will, in which case we can just define
the function triple_n_times using n_times:

fun triple x = 3*x

fun triple_n_times (n,x) = n_times(triple,n,x)

Polymorphic Types and Functions as Arguments

Let us now consider the type of n_times, which is (’a -> ’a) * int * ’a -> ’a. It might be simpler at
first to consider the type (int -> int) * int * int -> int, which is how n_times is used for x1 and x2

above: It takes 3 arguments, the first of which is itself a function that takes and returns an int. Similarly, for
x3 we use n_times as though it has type (int list -> int list) * int * int list -> int list. But
choosing either one of these types for n_times would make it less useful because only some of our example
uses would type-check. The type (’a -> ’a) * int * ’a -> ’a says the third argument and result can be
any type, but they have to be the same type, as does the argument and return type for the first argument.
When types can be any type and do not have to be the same as other types, we use different letters (’b, ’c,
etc.)

This is called parametric polymorphism, or perhaps more commonly generic types. It lets functions take
arguments of any type. It is a separate issue from first-class functions:

• There are functions that take functions and do not have polymorphic types

• There are functions with polymorphic types that do not take functions.

However, many of our examples with first-class functions will have polymorphic types. That is a good thing
because it makes our code more reusable.

Without parametric polymorphism, we would have to redefine lists for every type of element that a list
might have. Instead, we can have functions that work for any kind of list, like length, which has type
’a list -> int even though it does not use any function arguments. Conversely, here is a higher-order
function that is not polymorphic: it has type (int->int) * int -> int:1

fun times_until_zero (f,x) =

if x = 0 then 0 else 1 + times_until_zero(f, f x)

1It would be better to make this function tail-recursive using an accumulator.
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Anonymous functions

There is no reason that a function like triple that is passed to another function like n_times needs to be
defined at top-level. As usual, it is better style to define such functions locally if they are needed only locally.
So we could write:

fun triple_n_times (n,x) =

let fun triple x = 3*x in n_times(triple,n,x) end

In fact, we could give the triple function an even smaller scope: we need it only as the first argument to
n_times, so we could have a let-expression there that evaluates to the triple function:

fun triple_n_times (n,x) = n_times((let fun triple y = 3*y in triple end), n, x)

Notice that in this example, which is actually poor style, we need to have the let-expression “return” triple

since, as always, a let-expression produces the result of the expression between in and end. In this case, we
simply look up triple in the environment, and the resulting function is the value that we then pass as the
first argument to n_times.

ML has a much more concise way to define functions right where you use them, as in this final, best version:

fun triple_n_times (n,x) = n_times((fn y => 3*y), n, x)

This code defines an anonymous function fn y => 3*y. It is a function that takes an argument y and has
body 3*y. The fn is a keyword and => (not =) is also part of the syntax. We never gave the function a
name (it is anonymous, see?), which is convenient because we did not need one. We just wanted to pass a
function to n_times, and in the body of n_times, this function is bound to f.

It is common to use anonymous functions as arguments to other functions. Moreover, you can put an
anonymous function anywhere you can put an expression — it simply is a value, the function itself. The
only thing you cannot do with an anonymous function is recursion, exactly because you have no name to
use for the recursive call. In such cases, you need to use a fun binding as before, and fun bindings must be
in let-expressions or at top-level.

For non-recursive functions, you could use anonymous functions with val bindings instead of a fun binding.
For example, these two bindings are exactly the same thing:

fun increment x = x + 1

val increment = fn x => x+1

They both bind increment to a value that is a function that returns its argument plus 1. So function-bindings
are almost syntactic sugar, but they support recursion, which is essential.

Unnecessary Function Wrapping

While anonymous functions are incredibly convenient, there is one poor idiom where they get used for no
good reason. Consider:

fun nth_tail_poor (n,x) = n_times((fn y => tl y), n, x)
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What is fn y => tl y? It is a function that returns the list-tail of its argument. But there is al-
ready a variable bound to a function that does the exact same thing: tl! In general, there is no rea-
son to write fn x => f x when we can just use f. This is analogous to the beginner’s habit of writing
if x then true else false instead of x. Just do this:

fun nth_tail (n,x) = n_times(tl, n, x)

Maps and filters

We now consider a very useful higher-order function over lists:

fun map (f,xs) =

case xs of

[] => []

| x::xs’ => (f x)::(map(f,xs’))

The map function takes a list and a function f and produces a new list by applying f to each element of the
list. Here are two example uses:

val x1 = map (increment, [4,8,12,16]) (* answer: [5,9,13,17] *)

val x2 = map (hd, [[1,2],[3,4],[5,6,7]]) (* answer: [1,3,5] *)

The type of map is illuminating: (’a -> ’b) * ’a list -> ’b list. You can pass map any kind of list
you want, but the argument type of f must be the element type of the list (they are both ’a). But the
return type of f can be a different type ’b. The resulting list is a ’b list. For x1, both ’a and ’b are
instantiated with int. For x2, ’a is int list and ’b is int.

The ML standard library provides a very similar function List.map, but it is defined in a curried form, a
topic we will discuss later in this unit.

The definition and use of map is an incredibly important idiom even though our particular example is simple.
We could have easily written a recursive function over lists of integers that incremented all the elements, but
instead we divided the work into two parts: The map implementer knew how to traverse a recursive data
structure, in this case a list. The map client knew what to do with the data there, in this case increment each
number. You could imagine either of these tasks — traversing a complicated piece of data or doing some
calculation for each of the pieces — being vastly more complicated and best done by different developers
without making assumptions about the other task. That is exactly what writing map as a helper function
that takes a function lets us do.

Here is a second very useful higher-order function for lists. It takes a function of type ’a -> bool and
an ’a list and returns the ’a list containing only the elements of the input list for which the function
returns true:

fun filter (f,xs) =

case xs of

[] => []

| x::xs’ => if f x

then x::(filter (f,xs’))

else filter (f,xs’)

Here is an example use that assumes the list elements are pairs with second component of type int; it returns
the list elements where the second component is even:
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fun get_all_even_snd xs = filter((fn (_,v) => v mod 2 = 0), xs)

(Notice how we are using a pattern for the argument to our anonymous function.)

Returning functions

Functions can also return functions. Here is an example:

fun double_or_triple f =

if f 7

then fn x => 2*x

else fn x => 3*x

The type of double_or_triple is (int -> bool) -> (int -> int): The if-test makes the type of f clear
and as usual the two branches of the if must have the same type, in this case int->int. However, ML will
print the type as (int -> bool) -> int -> int, which is the same thing. The parentheses are unnecessary
because the -> “associates to the right”, i.e., t1 -> t2 -> t3 -> t4 is t1 -> (t2 -> (t3 -> t4)).

Not just for numbers and lists

Because ML programs tend to use lists a lot, you might forget that higher-order functions are useful for more
than lists. Some of our first examples just used integers. But higher-order functions also are great for our
own data structures. Here we use an is_even function to see if all the constants in an arithmetic expression
are even. We could easily reuse true_of_all_constants for any other property we wanted to check.

datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

fun is_even v =

(v mod 2 = 0)

fun true_of_all_constants(f,e) =

case e of

Constant i => f i

| Negate e1 => true_of_all_constants(f,e1)

| Add(e1,e2) => true_of_all_constants(f,e1) andalso true_of_all_constants(f,e2)

| Multiply(e1,e2) => true_of_all_constants(f,e1) andalso true_of_all_constants(f,e2)

fun all_even e = true_of_all_constants(is_even,e)

Lexical Scope

So far, the functions we have passed to or returned from other functions have been closed : the function
bodies used only the function’s argument(s) and any locally defined variables. But we know that functions
can do more than that: they can use any bindings that are in scope. Doing so in combination with higher-
order functions is very powerful, so it is crucial to learn effective idioms using this technique. But first it is
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even more crucial to get the semantics right. This is probably the most subtle and important concept in the
entire course, so go slowly and read carefully.

The body of a function is evaluated in the environment where the function is defined, not the environment
where the function is called. Here is a very simple example to demonstrate the difference:

val x = 1

fun f y = x + y

val x = 2

val y = 3

val z = f (x+y)

In this example, f is bound to a function that takes an argument y. Its body also looks up x in the
environment where f was defined. Hence this function always increments its argument since the environment
at the definition maps x to 1. Later we have a different environment where f maps to this function, x maps
to 2, y maps to 3, and we make the call f x. Here is how evaluation proceeds:

• Look up f to get the previously described function.

• Evaluate the argument x+y in the current environment by looking up x and y, producing 5.

• Call the function with the argument 5, which means evaluating the body x+y in the “old” environment
where x maps to 1 extended with y mapping to 5. So the result is 6.

Notice the argument was evaluated in the current environment (producing 5), but the function body was
evaluated in the “old” environment. We discuss below why this semantics is desirable, but first we define this
semantics more precisely and understand the semantics with additional silly examples that use higher-order
functions.

This semantics is called lexical scope. The alternate, inferior semantics where you use the current environment
(which would produce 7 in the above example) is called dynamic scope.

Environments and Closures

We have said that functions are values, but we have not been precise about what that value exactly is. We
now explain that a function value has two parts, the code for the function (obviously) and the environment
that was current when we created the function. These two parts really do form a “pair” but we put “pair” in
quotation marks because it is not an ML pair, just something with two parts. You cannot access the parts
of the “pair” separately; all you can do is call the function. This call uses both parts because it evaluates
the code part using the environment part.

This “pair” is called a function closure or just closure. The reason is that while the code itself can have free
variables (variables that are not bound inside the code so they need to be bound by some outer environment),
the closure carries with it an environment that provides all these bindings. So the closure overall is “closed”
— it has everything it needs to produce a function result given a function argument.

In the example above, the binding fun f y = x + y bound f to a closure. The code part is the function
fn y => x + y and the environment part maps x to 1. Therefore, any call to this closure will return y+1.
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(Silly) Examples Including Higher-Order Functions

Lexical scope and closures get more interesting when we have higher-order functions, but the semantics
already described will lead us to the right answers.

Example 1:

val x = 1

fun f y =

let

val x = y+1

in

fn z => x + y + z

end

val x = 3

val g = f 4

val y = 5

val z = g 6

Here, f is bound to a closure where the environment part maps x to 1. So when we later evaluate f 4, we
evaluate let val x = y + 1 in fn z => x + y + z end in an environment where x maps to 1 extended
to map y to 4. But then due to the let-binding we shadow x so we evaluate fn z => x + y + z in an
environment where x maps to 5 and y maps to 4. How do we evaluate a function like fn z => x + y + z?
We create a closure with the current environment. So f 4 returns a closure that, when called, will always
add 9 to its argument, no matter what the environment is at any call-site. Hence, in the last line of the
example, z will be bound to 15.

Example 2:

fun f g =

let

val x = 3

in

g 2

end

val x = 4

fun h y = x + y

val z = f h

In this example, f is bound to a closure that takes another function g as an argument and returns the result
of g 2. The closure bound to h always adds 4 to its argument because the argument is y, the body is x+y,
and the function is defined in an environment where x maps to 4. So in the last line, z will be bound to
6. The binding val x = 3 is totally irrelevant: the call g 2 is evaluated by looking up g to get the closure
that was passed in and then using that closure with its environment (in which x maps to 4) with 2 for an
argument.

Why Lexical Scope

While lexical scope and higher-order functions take some getting used to, decades of experience make clear
that this semantics is what we want. Much of the rest of this section will describe various widespread idioms
that are powerful and that rely on lexical scope.

8



But first we can also motivate lexical scope by showing how dynamic scope (where you just have one current
environment and use it to evaluate function bodies) leads to some fundamental problems.

First, suppose in Example 1 above the body of f was changed to let val q = y+1 in fn z => q + y + z.
Under lexical scope this is fine: we can always change the name of a local variable and its uses without it
affecting anything. Under dynamic scope, now the call to g 6 will make no sense: we will try to look up q,
but there is no q in the environment at the call-site.

Second, consider again the original version of Example 1 but now change the line val x = 3 to val x = "hi".
Under lexical scope, this is again fine: that binding is never actually used. Under dynamic scope, the call to
g 6 will look-up x, get a string, and try to add it, which should not happen in a program that type-checks.

Similar issues arise with Example 2: The body of f in this example is awful: we have a local binding we
never use. Under lexical scope we can remove it, changing the body to g 2 and know that this has no effect
on the rest of the program. Under dynamic scope it would have an effect. Also, under lexical scope we know
that any use of the closure bound to h will add 4 to its argument regardless of how other functions like g

are implemented and what variable names they use. This is a key separation-of-concerns that only lexical
scope provides.

For “regular” variables in programs, lexical scope is the way to go. There are some compelling uses for
dynamic scoping for certain idioms, but few languages have special support for these (Racket does) and very
few if any modern languages have dynamic scoping as the default. But you have seen one feature that is
more like dynamic scope than lexical scope: exception handling. When an exception is raised, evaluation
has to “look up” which handle expression should be evaluated. This “look up” is done using the dynamic
call stack, with no regard for the lexical structure of the program.

Passing Closures to Iterators Like Filter

The examples above are silly, so we need to show useful programs that rely on lexical scope. The first idiom
we will show is passing functions to iterators like map and filter. The functions we previously passed did not
use their environment (only their arguments and maybe local variables), but being able to pass in closures
makes the higher-order functions much more widely useful. Consider:

fun filter (f,xs) =

case xs of

[] => []

| x::xs’ => if f x then x::(filter(f,xs’)) else filter(f,xs’)

fun allGreaterThanSeven xs = filter (fn x => x > 7, xs)

fun allGreaterThan (xs,n) = filter (fn x => x > n, xs)

Here, allGreaterThanSeven is “old news” — we pass in a function that removes from the result any numbers
7 or less in a list. But it is much more likely that you want a function like allGreatherThan that takes the
“limit” as a parameter n and uses the function fn x => x > n. Notice this requires a closure and lexical
scope! When the implementation of filter calls this function, we need to look up n in the environment
where fn x => x > n was defined.

Here are two additional examples:

fun allShorterThan1 (xs,s) = filter (fn x => String.size x < String.size s, xs)
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fun allShorterThan2 (xs,s) =

let

val i = String.size s

in

filter(fn x => String.size x < i, xs)

end

Both these functions take a list of strings xs and a string s and return a list containing only the strings in
xs that are shorter than s. And they both use closures, to look up s or i when the anonymous functions get
called. The second one is more complicated but a bit more efficient: The first one recomputes String.size s

once per element in xs (because filter calls its function argument this many times and the body evaluates
String.size s each time). The second one “precomputes” String.size s and binds it to a variable i

available to the function fn x => String.size x < i.

Fold and More Closure Examples

Beyond map and filter, a third incredibly useful higher-order function is fold, which can have several slightly
different definitions and is also known by names such as reduce and inject. Here is one common definition:

fun fold (f,acc,xs) =

case xs of

[] => acc

| x::xs’ => fold (f, f(acc,x), xs’)

fold takes an “initial answer” acc and uses f to “combine” acc and the first element of the list, using this
as the new “initial answer” for “folding” over the rest of the list. We can use fold to take care of iterating
over a list while we provide some function that expresses how to combine elements. For example, to sum the
elements in a list foo, we can do:

fold ((fn (x,y) => x+y), 0, foo)

As with map and filter, much of fold’s power comes from clients passing closures that can have “private
fields” (in the form of variables bindings) for keeping data they want to consult. Here are two examples.
The first counts how many elements are in some integer range. The second checks if all elements are strings
shorter than some other string’s length.

fun numberInRange (xs,lo,hi) =

fold ((fn (x,y) =>

x + (if y >= lo andalso y <= hi then 1 else 0)),

0, xs)

fun areAllShorter (xs,s) =

let

val i = String.size s

in

fold((fn (x,y) => x andalso String.size y < i), true, xs)

end

This pattern of splitting the recursive traversal (fold or map) from the data-processing done on the elements
(the closures passed in) is fundamental. In our examples, both parts are so easy we could just do the whole
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thing together in a few simple lines. More generally, we may have a very complicated set of data structures
to traverse or we may have very involved data processing to do. It is good to separate these concerns so that
the programming problems can be solved separately.

Another Closure Idiom: Combining Functions

Function composition

When we program with lots of functions, it is useful to create new functions that are just combinations of
other functions. You have probably done similar things in mathematics, such as when you compose two
functions. For example, here is a function that does exactly function composition:

fun compose (f,g) = fn x => f (g x)

It takes two functions f and g and returns a function that applies its argument to g and makes that the
argument to f. Crucially, the code fn x => f (g x) uses the f and g in the environment where it was
defined. Notice the type of compose is inferred to be (’a -> ’b) * (’c -> ’a) -> ’c -> ’b, which is
equivalent to what you might write: (’b -> ’c) * (’a -> ’b) -> (’a -> ’c) since the two types simply
use different type-variable names consistently.

As a cute and convenient library function, the ML library defines the infix operator o as function composition,
just like in math. So instead of writing:

fun sqrt_of_abs i = Math.sqrt(Real.fromInt (abs i))

you could write:

fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i

But this second version makes clearer that we can just use function-composition to create a function that
we bind to a variable with a val-binding, as in this third version:

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

While all three versions are fairly readable, the first one does not immediately indicate to the reader that
sqrt_of_abs is just the composition of other functions.

The Pipeline Operator

In functional programming, it is very common to compose other functions to create larger ones, so it makes
sense to define convenient syntax for it. While the third version above is concise, it, like function composition
in mathematics, has the strange-to-many-programmers property that the computation proceeds from right-
to-left: “Take the absolute value, convert it to a real, and compute the square root” may be easier to
understand than, “Take the square root of the conversion to real of the absolute value.”

We can define convenient syntax for left-to-right as well. Let’s first define our own infix operator that lets
us put the function to the right of the argument we are calling it with:

infix |> (* tells the parser |> is a function that appears between its two arguments *)

fun x |> f = f x
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Now we can write:

fun sqrt_of_abs i = i |> abs |> Real.fromInt |> Math.sqrt

This operator, commonly called the pipeline operator, is very popular in F# programming. (F# is a dialect
of ML that runs on .Net and interacts well with libraries written in other .Net languages.) As we have seen,
there is nothing complicated about the semantics of the pipeline operator.

Another Closure Idiom: Currying and Partial Application

The next idiom we consider is very convenient in general, and is often used when defining and using higher-
order functions like map, filter, and fold. We have already seen that in ML every function takes exactly
one argument, so you have to use an idiom to get the effect of multiple arguments. Our previous approach
passed a tuple as the one argument, so each part of the tuple is conceptually one of the multiple arguments.
Another more clever and often more convenient way is to have a function take the first conceptual argument
and return another function that takes the second conceptual argument and so on. Lexical scope is essential
to this technique working correctly.

This technique is called currying after a logician named Haskell Curry who studied related ideas (so if you
do not know that, then the term currying does not make much sense).

Defining and Using a Curried Function

Here is an example of a “three argument” function that uses currying:

val sorted3 = fn x => fn y => fn z => z >= y andalso y >= x

If we call sorted3 4 we will get a closure that has x in its environment. If we then call this closure with
5, we will get a closure that has x and y in its environment. If we then call this closure with 6, we will get
true because 6 is greater than 5 and 5 is greater than 4. That is just how closures work.

So ((sorted3 4) 5) 6 computes exactly what we want and feels pretty close to calling sorted3 with 3 argu-
ments. Even better, the parentheses are optional, so we can write exactly the same thing as sorted3 4 5 6,
which is actually fewer characters than our old tuple approach where we would have:

fun sorted3_tupled (x,y,z) = z >= y andalso y >= x

val someClient = sorted3_tupled(4,5,6)

In general, the syntax e1 e2 e3 e4 is implicitly the nested function calls (((e1 e2) e3) e4) and this
choice was made because it makes using a curried function so pleasant.

Partial Application

Even though we might expect most clients of our curried sorted3 to provide all 3 conceptual arguments, they
might provide fewer and use the resulting closure later. This is called “partial application” because we are
providing a subset (more precisely, a prefix) of the conceptual arguments. As a silly example, sorted3 0 0

returns a function that returns true if its argument is nonnegative.

Partial Application and Higher-Order Functions

Currying is particularly convenient for creating similar functions with iterators. For example, here is a
curried version of a fold function for lists:
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fun fold f = fn acc => fn xs =>

case xs of

[] => acc

| x::xs’ => fold f (f(acc,x)) xs’

Now we could use this fold to define a function that sums a list elements like this:

fun sum1 xs = fold (fn (x,y) => x+y) 0 xs

But that is unnecessarily complicated compared to just using partial application:

val sum2 = fold (fn (x,y) => x+y) 0

The convenience of partial application is why many iterators in ML’s standard library use currying with the
function they take as the first argument. For example, the types of all these functions use currying:

val List.map = fn : (’a -> ’b) -> ’a list -> ’b list

val List.filter = fn : (’a -> bool) -> ’a list -> ’a list

val List.foldl = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

As an example, List.foldl((fun (x,y) => x+y), 0, [3,4,5]) does not type-check because List.foldl

expects a ’a * ’b -> ’b function, not a triple. The correct call is List.foldl (fn (x,y) => x+y) 0 [3,4,5],
which calls List.foldl with a function, which returns a closure and so on.

There is syntactic sugar for defining curried functions; you can just separate the conceptual arguments by
spaces rather than using anonymous functions. So the better style for our fold function would be:

fun fold f acc xs =

case xs of

[] => acc

| x::xs’ => fold f (f(acc,x)) xs’

Another useful curried function is List.exists, which we use in the callback example below. These library
functions are easy to implement ourselves, so we should understand they are not fancy:

fun exists predicate xs =

case xs of

[] => false

| x::xs’ => predicate x orelse exists predicate xs

Currying in General

While currying and partial application are great for higher-order functions, they are great in general too.
They work for any multi-argument function and partial application can also be surprisingly convenient. In
this example, both zip and range are defined with currying and countup partially applies range. The
add_numbers function turns the list [v1,v2,...,vn] into [(1,v1),(2,v2),...,(n,vn)].

fun zip xs ys =

case (xs,ys) of

([],[]) => []

| (x::xs’,y::ys’) => (x,y) :: (zip xs’ ys’)

| _ => raise Empty
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fun range i j = if i > j then [] else i :: range (i+1) j

val countup = range 1

fun add_numbers xs = zip (countup (length xs)) xs

Combining Functions to Curry and Uncurry Other Functions

Sometimes functions are curried but the arguments are not in the order you want for a partial application.
Or sometimes a function is curried when you want it to use tuples or vice-versa. Fortunately our earlier
idiom of combining functions can take functions using one approach and produce functions using another:

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

Looking at the types of these functions can help you understand what they do. As an aside, the types are
also fascinating because if you pronounce -> as “implies” and * as “and”, the types of all these functions
are logical tautologies.

Efficiency

Finally, you might wonder which is faster, currying or tupling. It almost never matters; they both do work
proportional to the number of conceptual arguments, which is typically quite small. For the performance-
critical functions in your software, it might matter to pick the faster way. In the version of the ML compiler we
are using, tupling happens to be faster. In widely used implementations of OCaml, Haskell, and F#, curried
functions are faster so they are the standard way to define multi-argument functions in those languages.

The Value Restriction

Once you have learned currying and partial application, you might try to use it to create a polymorphic
function. Unfortunately, certain uses, such as these, do not work in ML:

val mapSome = List.map SOME (*turn [v1,v2,...,vn] into [SOME v1, SOME v2, ..., SOME vn]*)

val pairIt = List.map (fn x => (x,x)) (*turn [v1,v2,...,vn] into [(v1,v1),(v2,v2),...,(vn,vn)]*)

Given what we have learned so far, there is no reason why this should not work, especially since all these
functions do work:

fun mapSome xs = List.map SOME xs

val mapSome = fn xs => List.map SOME xs

val pairIt : int list -> (int * int) list = List.map (fn x => (x,x))

val incrementIt = List.map (fn x => x+1)

The reason is called the value restriction and it is sometimes annoying. It is in the language for good reason:
without it, the type-checker might allow some code to break the type system. This can happen only with
code that is using mutation and the code above is not, but the type-checker does not know that.

The simplest approach is to ignore this issue until you get a warning/error about the value restriction. When
you do, turn the val-binding back into a fun-binding like in the first example above of what works.

When we study type inference in the next unit, we will discuss the value restriction in a little more detail.
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Mutation via ML References

We now finally introduce ML’s support for mutation. Mutation is okay in some settings. A key approach
in functional programming is to use it only when “updating the state of something so all users of that state
can see a change has occurred” is the natural way to model your computation. Moreover, we want to keep
features for mutation separate so that we know when mutation is not being used.

In ML, most things really cannot be mutated. Instead you must create a reference, which is a container
whose contents can be changed. You create a new reference with the expression ref e (the initial contents
are the result of evaluating e). You get a reference r’s current contents with !r (not to be confused with
negation in Java or C), and you change r’s contents with r := e. The type of a reference that contains
values of type t is written t ref.

One good way to think about a reference is as a record with one field where that field can be updated with
the := operator.

Here is a short example:

val x = ref 0

val x2 = x (* x and x2 both refer to the same reference *)

val x3 = ref 0

(* val y = x + 1*) (* wrong: x is not an int *)

val y = (!x) + 1 (* y is 1 *)

val _ = x := (!x) + 7 (* the contents of the reference x refers to is now 7 *)

val z1 = !x (* z1 is 7 *)

val z2 = !x2 (* z2 is also 7 -- with mutation, aliasing matters*)

val z3 = !x3 (* z3 is 0 *)

Another Closure Idiom: Callbacks

The next common idiom we consider is implementing a library that detects when “events” occur and informs
clients that have previously “registered” their interest in hearing about events. Clients can register their
interest by providing a “callback” — a function that gets called when the event occurs. Examples of events
for which you might want this sort of library include things like users moving the mouse or pressing a key.
Data arriving from a network interface is another example. Computer players in a game where the events
are “it is your turn” is yet another.

The purpose of these libraries is to allow multiple clients to register callbacks. The library implementer has
no idea what clients need to compute when an event occurs, and the clients may need “extra data” to do the
computation. So the library implementor should not restrict what “extra data” each client uses. A closure is
ideal for this because a function’s type t1 -> t2 does not specify the types of any other variables a closure
uses, so we can put the “extra data” in the closure’s environment.

If you have used “event listeners” in Java’s Swing library, then you have used this idiom in an object-oriented
setting. In Java, you get “extra data” by defining a subclass with additional fields. This can take an awful
lot of keystrokes for a simple listener, which is a (the?) main reason the Java language added anonymous
inner classes (which you do not need to know about for this course, but we will show an example later),
which are closer to the convenience of closures.

In ML, we will use mutation to show the callback idiom. This is reasonable because we really do want
registering a callback to “change the state of the world” — when an event occurs, there are now more
callbacks to invoke.
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Our example uses the idea that callbacks should be called when a key on the keyboard is pressed. We will
pass the callbacks an int that encodes which key it was. Our interface just needs a way to register callbacks.
(In a real library, you might also want a way to unregister them.)

val onKeyEvent : (int -> unit) -> unit

Clients will pass a function of type int -> unit that, when called later with an int, will do whatever they
want. To implement this function, we just use a reference that holds a list of the callbacks. Then when an
event actually occurs, we assume the function on_event is called and it calls each callback in the list:

val cbs : (int -> unit) list ref = ref []

fun onKeyEvent f = cbs := f::(!cbs) (* The only "public" binding *)

fun onEvent i =

let fun loop fs =

case fs of

[] => ()

| f::fs’ => (f i; loop fs’)

in loop (!cbs) end

Most importantly, the type of onKeyEvent places no restriction on what extra data a callback can access
when it is called. Here are different clients (calls to onKeyEvent) that use different bindings of different types
in their environment. (The val _ = e idiom is common for executing an expression just for its side-effect,
in this case registering a callback.)

val timesPressed = ref 0

val _ = onKeyEvent (fn _ => timesPressed := (!timesPressed) + 1)

fun printIfPressed i =

onKeyEvent (fn j => if i=j

then print ("you pressed " ^ Int.toString i ^ "\n")

else ())

val _ = printIfPressed 4

val _ = printIfPressed 11

val _ = printIfPressed 23

Optional: Another Closure Idiom: Abstract Data Types

This last closure idiom we will consider is the fanciest and most subtle. It is not the sort of thing programmers
typically do — there is usually a simpler way to do it in a modern programming language. It is included as
an advanced example to demonstrate that a record of closures that have the same environment is a lot like
an object in object-oriented programming: the functions are methods and the bindings in the environment
are private fields and methods. There are no new language features here, just lexical scope. It suggests
(correctly) that functional programming and object-oriented programming are more similar than they might
first appear (a topic we will revisit later in the course; there are also important differences).

The key to an abstract data type (ADT) is requiring clients to use it via a collection of functions rather
than directly accessing its private implementation. Thanks to this abstraction, we can later change how the
data type is implemented without changing how it behaves for clients. In an object-oriented language, you
might implement an ADT by defining a class with all private fields (inaccessible to clients) and some public
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methods (the interface with clients). We can do the same thing in ML with a record of closures; the variables
that the closures use from the environment correspond to the private fields.

As an example, consider an implementation of a set of integers that supports creating a new bigger set and
seeing if an integer is in a set. Our sets are mutation-free in the sense that adding an integer to a set produces
a new, different set. (We could just as easily define a mutable version using ML’s references.) In ML, we
could define a type that describes our interface:

datatype set = S of { insert : int -> set, member : int -> bool, size : unit -> int }

Roughly speaking, a set is a record with three fields, each of which holds a function. It would be simpler to
write:

type set = { insert : int -> set, member : int -> bool, size : unit -> int }

but this does not work in ML because type bindings cannot be recursive. So we have to deal with the mild
inconvenience of having a constructor S around our record of functions defining a set even though sets are
each-of types, not one-of types. Notice we are not using any new types or features; we simply have a type
describing a record with fields named insert, member, and size, each of which holds a function.

Once we have an empty set, we can use its insert field to create a one-element set, and then use that set’s
insert field to create a two-element set, and so on. So the only other thing our interface needs is a binding
like this:

val empty_set = ... : set

Before implementing this interface, let’s see how a client might use it (many of the parentheses are optional
but may help understand the code):

fun use_sets () =

let val S s1 = empty_set

val S s2 = (#insert s1) 34

val S s3 = (#insert s2) 34

val S s4 = #insert s3 19

in

if (#member s4) 42

then 99

else if (#member s4) 19

then 17 + (#size s3) ()

else 0

end

Again we are using no new features. #insert s1 is reading a record field, which in this case produces a
function that we can then call with 34. If we were in Java, we might write s1.insert(34) to do something
similar. The val bindings use pattern-matching to “strip off” the S constructors on values of type set.

There are many ways we could define empty_set; they will all use the technique of using a closure to
“remember” what elements a set has. Here is one way:

val empty_set =

let

fun make_set xs = (* xs is a "private field" in result *)
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let (* contains a "private method" in result *)

fun contains i = List.exists (fn j => i=j) xs

in

S { insert = fn i => if contains i

then make_set xs

else make_set (i::xs),

member = contains,

size = fn () => length xs

}

end

in

make_set []

end

All the fanciness is in make_set, and empty_set is just the record returned by make_set []. What make_set
returns is a value of type set. It is essentially a record with three closures. The closures can use xs, the
helper function contains, and make_set. Like all function bodies, they are not executed until they are
called.

Optional: Closures in Other Languages

To conclude our study of function closures, we digress from ML to show similar programming patterns in
Java (using generics and interfaces) and C (using function pointers taking explicit environment arguments).
We will not test you on this material, and you are welcome to skip it. However, it may help you understand
closures by seeing similar ideas in other settings, and it should help you see how central ideas in one language
can influence how you might approach problems in other languages. That is, it could make you a better
programmer in Java or C.

For both Java and C, we will “port” this ML code, which defines our own polymorphic linked-list type
constructor and three polymorphic functions (two higher-order) over that type. We will investigate a couple
ways we could write similar code in Java or C, which will can help us better understand similarities between
closures and objects (for Java) and how environments can be made explicit (for C). In ML, there is no reason
to define our own type constructor since ’a list is already written, but doing so will help us compare to
the Java and C versions.

datatype ’a mylist = Cons of ’a * (’a mylist) | Empty

fun map f xs =

case xs of

Empty => Empty

| Cons(x,xs) => Cons(f x, map f xs)

fun filter f xs =

case xs of

Empty => Empty

| Cons(x,xs) => if f x then Cons(x,filter f xs) else filter f xs

fun length xs =

case xs of

Empty => 0
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| Cons(_,xs) => 1 + length xs

Using this library, here are two client functions. (The latter is not particularly efficient, but shows a simple
use of length and filter.)

val doubleAll = map (fn x => x * 2)

fun countNs (xs, n : int) = length (filter (fn x => x=n) xs)

Optional: Closures in Java using Objects and Interfaces

Java 8 is scheduled to include convenient support for closures much like most other mainstream object-
oriented languages now do (C#, Scala, Ruby, ...), but it is worth considering how we might write similar
code in Java without this support, as has been necessary for almost two decades. While we do not have
first-class functions, curring, or type inference, we do have generics (Java did not used to) and we can define
interfaces with one method, which we can use like function types. Without further ado, here is a Java
analogue of the code, followed by a brief discussion of features you may not have seen before and other ways
we could have written the code:

interface Func<B,A> {

B m(A x);

}

interface Pred<A> {

boolean m(A x);

}

class List<T> {

T head;

List<T> tail;

List(T x, List<T> xs) {

head = x;

tail = xs;

}

static <A,B> List<B> map(Func<B,A> f, List<A> xs) {

if(xs==null)

return null;

return new List<B>(f.m(xs.head), map(f,xs.tail));

}

static <A> List<A> filter(Pred<A> f, List<A> xs) {

if(xs==null)

return null;

if(f.m(xs.head))

return new List<A>(xs.head, filter(f,xs.tail));

return filter(f,xs.tail);

}

static <A> int length(List<A> xs) {

int ans = 0;

while(xs != null) {

++ans;

xs = xs.tail;

}
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return ans;

}

}

class ExampleClients {

static List<Integer> doubleAll(List<Integer> xs) {

return List.map((new Func<Integer,Integer>() {

public Integer m(Integer x) { return x * 2; }

}),

xs);

}

static int countNs(List<Integer> xs, final int n) {

return List.length(List.filter((new Pred<Integer>() {

public boolean m(Integer x) { return x==n; }

}),

xs));

}

}

This code uses several interesting techniques and features:

• In place of the (inferred) function types ’a -> ’b for map and ’a -> bool for filter, we have generic
interfaces with one method. A class implementing one of these interfaces can have fields of any types
it needs, which will serve the role of a closure’s environment.

• The generic class List serves the role of the datatype binding. The constructor initializes the head

and tail fields as expected, using the standard Java convention of null for the empty list.

• Static methods in Java can be generic provided the type variables are explicitly mentioned to the left
of the return type. Other than that and syntax, the map and filter implementations are similar to
their ML counterparts, using the one method in the Func or Pred interface as the function passed as
an argument. For length, we could use recursion, but choose instead to follow Java’s preference for
loops.

• If you have never seen anonymous inner classes, then the methods doubleAll and countNs will look
quite odd. Somewhat like anonymous functions, this language feature lets us crate an object that
implements an interface without giving a name to that object’s class. Instead, we use new with
the interface being implemented (instantiating the type variables appropriately) and then provide
definitions for the methods. As an inner class, this definition can use fields of the enclosing object
or final local variables and parameters of the enclosing method, gaining much of the convenience of a
closure’s environment with more cumbersome syntax. (Anonymous inner classes were added to Java
to support callbacks and similar idioms.)

There are many different ways we could have written the Java code. Of particular interest:

• Tail recursion is not as efficient as loops in implementations of Java, so it is reasonable to prefer loop-
based implementations of map and filter. Doing so without reversing an intermediate list is more
intricate than you might think (you need to keep a pointer to the previous element, with special code
for the first element), which is why this sort of program is often asked at programming interviews. The
recursive version is easy to understand, but would be unwise for very long lists.

• A more object-oriented approach would be to make map, filter, and length instance methods instead
of static methods. The method signatures would change to:
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<B> List<B> map(Func<B,T> f) {...}

List<T> filter(Pred<T> f) {...}

int length() {...}

The disadvantage of this approach is that we have to add special cases in any use of these methods if
the client may have an empty list. The reason is empty lists are represented as null and using null

as the receiver of a call raises a NullPointerException. So methods doubleAll and countNs would
have to check their arguments for null to avoid such exceptions.

• Another more object-oriented approach would be to not use null for empty lists. Instead we would
have an abstract list class with two subclasses, one for empty lists and one for nonempty lists. This
approach is a much more faithful object-oriented approach to datatypes with multiple constructors,
and using it makes the previous suggestion of instance methods work out without special cases. It does
seem more complicated and longer to programmers accustomed to using null.

• Anonymous inner classes are just a convenience. We could instead define “normal” classes that imple-
ment Func<Integer,Integer> and Pred<Integer> and create instances to pass to map and filter.
For the countNs example, our class would have an int field for holding n and we would pass the value
for this field to the constructor of the class, which would initialize the field.

Optional: Closures in C Using Explicit Environments

C does have functions, but they are not closures. If you pass a pointer to a function, it is only a code pointer.
As we have studied, if a function argument can use only its arguments, higher-order functions are much less
useful. So what can we do in a language like C? We can change the higher-order functions as follows:

• Take the environment explicitly as another argument.

• Have the function-argument also take an environment.

• When calling the function-argument, pass it the environment.

So instead of a higher-order function looking something like this:

int f(int (*g)(int), list_t xs) { ... g(xs->head) ... }

we would have it look like this:

int f(int (*g)(void*,int), void* env, list_t xs) { ... g(env,xs->head) ... }

We use void* because we want f to work with functions that use environments of different types, so there is
no good choice. Clients will have to cast to and from void* from other compatible types. We do not discuss
those details here.

While the C code has a lot of other details, this use of explicit environments in the definitions and uses of
map and filter is the key difference from the versions in other languages:

#include <stdlib.h>

#include <stdint.h>

#include <stdbool.h>
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typedef struct List list_t;

struct List {

void * head;

list_t * tail;

};

list_t * makelist (void * x, list_t * xs) {

list_t * ans = (list_t *)malloc(sizeof(list_t));

ans->head = x;

ans->tail = xs;

return ans;

}

list_t * map(void* (*f)(void*,void*), void* env, list_t * xs) {

if(xs==NULL)

return NULL;

return makelist(f(env,xs->head), map(f,env,xs->tail));

}

list_t * filter(bool (*f)(void*,void*), void* env, list_t * xs) {

if(xs==NULL)

return NULL;

if(f(env,xs->head))

return makelist(xs->head, filter(f,env,xs->tail));

return filter(f,env,xs->tail);

}

int length(list_t* xs) {

int ans = 0;

while(xs != NULL) {

++ans;

xs = xs->tail;

}

return ans;

}

void* doubleInt(void* ignore, void* i) { // type casts to match what map expects

return (void*)(((intptr_t)i)*2);

}

list_t * doubleAll(list_t * xs) { // assumes list holds intptr_t fields

return map(doubleInt, NULL, xs);

}

bool isN(void* n, void* i) { // type casts to match what filter expects

return ((intptr_t)n)==((intptr_t)i);

}

int countNs(list_t * xs, intptr_t n) { // assumes list hold intptr_t fields

return length(filter(isN, (void*)n, xs));

}

As in Java, using recursion instead of loops is much simpler but likely less efficient. Another alternative
would be to define structs that put the code and environment together in one value, but our approach of
using is an extra void* argument to every higher-order function is more common in C code.
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Standard-Library Documentation

This topic is not closely related to the rest of the unit, but we need it a little for Homework 3, it is useful
for any programming language, and it shows some of the useful functions (higher-order or not) predefined
in ML.

ML, like many languages, has a standard library. This is code that programs in the language can assume is
always available. There are two common and distinct reasons for code to be in a standard library:

• We need a standard-library to interface with the “outside world” to provide features that would oth-
erwise be impossible to implement. Examples include opening a file or setting a timer.

• A standard-library can provide functions so common and useful that it is appropriate to define them
once so that all programs can use the same function name, order of arguments, etc. Examples include
functions to concatenate two strings, map over a list, etc.

Standard libraries are usually so large that it makes no sense to expect to be taught them. You need to get
comfortable seeking out documentation and developing a rough intuition on “what is likely provided” and
“where it is likely to be.” So on Homework 3, we are leaving it to you to find out more about a few simple
functions in ML’s Standard Library.

The online documentation is very primitive compared to most modern languages, but it is entirely sufficient
for our needs. Just go to:

http://www.standardml.org/Basis/manpages.html

The functions are organized using ML’s module system, which we will study the basics of in the next unit.
For example, useful functions over characters are in the structure Char. To use a function foo in structure
Bar, you write Bar.foo, which is exactly how we have been using functions like List.map. One wrinkle is
that functions for the String structure are documented under the signature STRING. Signatures are basically
types for structures, as we will study later. Certain library functions are considered so useful they are not
in a structure, like hd. These bindings are described at
http://www.standardml.org/Basis/top-level-chapter.html.

There is no substitute for precise and complete documentation of code libraries, but sometimes it can be
inconvenient to look up the full documentation when you are in the middle of programming and just need
a quick reminder. For example, it is easy to forget the order of arguments or whether a function is curried
or tupled. Often you can use the REPL to get the information you need quickly. After all, if you enter a
function like List.map, it evaluates this expression and returns its type. You can even guess the name of a
function if you do not remember what it is called. If you are wrong, you will just get an undefined-variable
message. Finally, using features just beyond what we will study, you can get the REPL to print out all the
bindings provided by a structure. Just do this for example:

structure X = List; (* List is the structure we want to know about *)

structure X : LIST (* This is what the REPL gives back *)

signature X = LIST; (* Write LIST because that is what follows the : on the previous line *)

Because looking things up in the REPL is so convenient, some REPLs for other languages have gone further
and provided special commands for printing the documentation associated with functions or libraries.
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