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Standard Description: This summary covers roughly the same material as class and recitation section. It
can help to read about the material in a narrative style and to have the material for an entire unit of the
course in a single document, especially when reviewing the material later. Please report errors in these notes,
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Datatype-Programming Without Datatypes

In ML, we used datatype-bindings to define our own one-of types, including recursive datatypes for tree-
based data, such as a little language for arithmetic expressions. A datatype-binding introduces a new type
into the static environment, along with constructors for creating data of the type and pattern-matching for

1



using data of the type. Racket, as a dynamically typed language, has nothing directly corresponding to
datatype-bindings, but it does support the same sort of data definitions and programming.

First, some situations where we need datatypes in ML are simpler in Racket because we can just use dynamic
typing to put any kind of data anywhere we want. For example, we know in ML that lists are polymorphic
but any particular list must have elements that all have the same type. So we cannot directly build a list
that holds “string or ints.” Instead, we can define a datatype to work around this restriction, as in this
example:

datatype int_or_string = I of int | S of string

fun funny_sum xs =

case xs of

[] => 0

| (I i)::xs’ => i + funny_sum xs’

| (S s)::xs’ => String.size s + funny_sum xs’

In Racket, no such work-around is necessary, as we can just write functions that work for lists whose elements
are numbers or strings:

(define (funny-sum xs)

(cond [(null? xs) 0]

[(number? (car xs)) (+ (car xs) (funny-sum (cdr xs)))]

[(string? (car xs)) (+ (string-length (car xs)) (funny-sum (cdr xs)))]

[#t (error "expected number or string")]))

Essential to this approach is that Racket has built-in primitives like null?, number?, and string? for testing
the type of data at run-time.

But for recursive datatypes like this ML definition for arithmetic expressions:

datatype exp = Const of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

adapting our programming idioms to Racket will prove more interesting.

We will first consider an ML function that evaluates things of type exp, but this function will have a
different return type than similar functions we wrote earlier in the course. We will then consider two
different approaches for defining and using this sort of “type” for arithmetic expressions in Racket. We will
argue the second approach is better, but the first approach is important for understanding Racket in general
and the second approach in particular.

Changing How We Evaluate Our Arithmetic Expression Datatype

The most obvious function to write that takes a value of the ML datatype exp defined above is one that
evaluates the arithmetic expression and returns the result. Previously we wrote such a function like this:

fun eval_exp_old e =

case e of

Const i => i

| Negate e2 => ~ (eval_exp_old e2)

| Add(e1,e2) => (eval_exp_old e1) + (eval_exp_old e2)

| Multiply(e1,e2) => (eval_exp_old e1) * (eval_exp_old e2)
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The type of eval_exp_old is exp -> int. In particular, the return type is int, an ML integer that we can
then add, multiply, etc. using ML’s arithmetic operators.

For the rest of this course unit, we will instead write this sort of function to return an exp, so the ML type
will become exp -> exp. The result of a call (including recursive calls) will have the form Const i for
some int i, e.g., Const 17. Callers have to check that the kind of exp returned is indeed a Const, extract
the underlying data (in ML, using pattern-matching), and then themselves use the Const constructor as
necessary to return an exp. For our little arithmetic language, this approach leads to a moderately more
complicated program:

exception Error of string

fun eval_exp_new e =

let

fun get_int e =

case e of

Const i => i

| _ => raise (Error "expected Const result")

in

case e of

Const _ => e (* notice we return the entire exp here *)

| Negate e2 => Const (~ (get_int (eval_exp_new e2)))

| Add(e1,e2) => Const ((get_int (eval_exp_new e1)) + (get_int (eval_exp_new e2)))

| Multiply(e1,e2) => Const ((get_int (eval_exp_new e1)) * (get_int (eval_exp_new e2)))

end

This extra complication has little benefit for our simple type exp, but we are doing it for a very good
reason: Soon we will be defining little languages that have multiple kinds of results. Suppose the result of
a computation did not have to be a number because it could also be a boolean, a string, a pair, a function
closure, etc. Then our eval_exp function needs to return some sort of one-of type and using a subset of the
possibilities defined by the type exp will serve our needs well. Then a case of eval_exp like addition will
need to check that the recursive results are the right kind of value. If this check does not succeed, then the
line of get_int above that raises an exception gets evaluated (whereas for our simple example so far, the
exception will never get raised).

Recursive Datatypes Via Racket Lists

Before we can write a Racket function analogous to the ML eval_exp_new function above, we need to define
the arithmetic expressions themselves. We need a way to construct constants, negations, additions, and
multiplications, a way to test what kind of expression we have (e.g., “is it an addition?”), and a way to
access the pieces (e.g., “get the first subexpression of an addition”). In ML, the datatype binding gave us
all this.

In Racket, dynamic typing lets us just use lists to represent any kind of data, including arithmetic expressions.
One sufficient idiom is to use the first list element to indicate “what kind of thing it is” and subsequent list
elements to hold the underlying data. With this approach, we can just define our own Racket functions for
constructing, testing, and accessing:

; helper functions for constructing

(define (Const i) (list ’Const i))

(define (Negate e) (list ’Negate e))

(define (Add e1 e2) (list ’Add e1 e2))
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(define (Multiply e1 e2) (list ’Multiply e1 e2))

; helper functions for testing

(define (Const? x) (eq? (car x) ’Const))

(define (Negate? x) (eq? (car x) ’Negate))

(define (Add? x) (eq? (car x) ’Add))

(define (Multiply? x) (eq? (car x) ’Multiply))

; helper functions for accessing

(define (Const-int e) (car (cdr e)))

(define (Negate-e e) (car (cdr e)))

(define (Add-e1 e) (car (cdr e)))

(define (Add-e2 e) (car (cdr (cdr e))))

(define (Multiply-e1 e) (car (cdr e)))

(define (Multiply-e2 e) (car (cdr (cdr e))))

(As an orthogonal note, we have not seen the syntax ’foo before. This is a Racket symbol. For our purposes
here, a symbol ’foo is a lot like a string "foo" in the sense that you can use any sequence of characters,
but symbols and strings are different kinds of things. Comparing whether two symbols are equal is a fast
operation, faster than string equality. You can compare symbols with eq? whereas you should not use eq?

for strings. We could have done this example with strings instead, using equal? instead of eq?.)

We can now write a Racket function to “evaluate” an arithmetic expression. It is directly analogous to the
ML version defined in eval_exp_new, just using our helper functions instead of datatype constructors and
pattern-matching:

(define (eval-exp e)

(cond [(Const? e) e] ; note returning an exp, not a number

[(Negate? e) (Const (- (Const-int (eval-exp (Negate-e e)))))]

[(Add? e) (let ([v1 (Const-int (eval-exp (Add-e1 e)))]

[v2 (Const-int (eval-exp (Add-e2 e)))])

(Const (+ v1 v2)))]

[(Multiply? e) (let ([v1 (Const-int (eval-exp (Multiply-e1 e)))]

[v2 (Const-int (eval-exp (Multiply-e2 e)))])

(Const (* v1 v2)))]

[#t (error "eval-exp expected an exp")]))

Similarly, we can use our helper functions to define arithmetic expressions:

(define test-exp (Multiply (Negate (Add (Const 2) (Const 2))) (Const 7)))

(define test-ans (eval-exp test-exp))

Notice that test-ans is ’(Const -28), not -28.

Also notice that with dynamic typing there is nothing in the program that defines “what is an arithmetic
expression.” Only our documentation and comments would indicate how arithmetic expressions are built in
terms of constants, negations, additions, and multiplications.

Recursive Datatypes Via Racket’s struct

The approach above for defining arithmetic expressions is inferior to a second approach we now introduce
using the special struct construct in Racket. A struct definition looks like:
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(struct foo (bar baz quux) #:transparent)

This defines a new “struct” called foo that is like an ML constructor. It adds to the environment functions
for constructing a foo, testing if something is a foo, and extracting the fields bar, baz, and quux from a foo.
The names of these bindings are formed systematically from the constructor name foo as follows:

• foo is a function that takes three arguments and returns a value that is a foo with a bar field holding the
first argument, a baz field holding the second argument, and a quux field holding the third argument.

• foo? is a function that takes one argument and returns #t for values created by calling foo and #f for
everything else.

• foo-bar is a function that takes a foo and returns the contents of the bar field, raising an error if
passed anything other than a foo.

• foo-baz is a function that takes a foo and returns the contents of the baz field, raising an error if
passed anything other than a foo.

• foo-quux is a function that takes a foo and returns the contents of the quux field, raising an error if
passed anything other than a foo.

There are some useful attributes we can include in struct definitions to modify their behavior, two of which
we discuss here.

First, the #:transparent attribute makes the fields and accessor functions visible even outside the module
that defines the struct. From a modularity perspective this is questionable style, but it has one big advantage
when using DrRacket: It allows the REPL to print struct values with their contents rather than just as an
abstract value. For example, with our definition of struct foo, the result of (foo "hi" (+ 3 7) #f) prints
as (foo "hi" 10 #f). Without the #:transparent attribute, it would print as #<foo>, and every value
produced from a call to the foo function would print this same way. This feature becomes even more useful
for examining values built from recursive uses of structs.

Second, the #:mutable attribute makes all fields mutable by also providing mutator functions like set-foo-bar!,
set-foo-baz!, and set-foo-quux!. In short, the programmer decides when defining a struct whether the
advantages of having mutable fields outweigh the disadvantages. It is also possible to make some fields
mutable and some fields immutable.

We can use structs to define a new way to represent arithmetic expressions and a function that evaluates
such arithmetic expressions:

(struct const (int) #:transparent)

(struct negate (e) #:transparent)

(struct add (e1 e2) #:transparent)

(struct multiply (e1 e2) #:transparent)

(define (eval-exp e)

(cond [(const? e) e] ; note returning an exp, not a number

[(negate? e) (const (- (const-int (eval-exp (negate-e e)))))]

[(add? e) (let ([v1 (const-int (eval-exp (add-e1 e)))]

[v2 (const-int (eval-exp (add-e2 e)))])

(const (+ v1 v2)))]

[(multiply? e) (let ([v1 (const-int (eval-exp (multiply-e1 e)))]

[v2 (const-int (eval-exp (multiply-e2 e)))])

(const (* v1 v2)))]

[#t (error "eval-exp expected an exp")]))
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Like with our previous approach, nothing in the language indicates how arithmetic expressions are defined
in terms of constants, negations, additions, and multiplications. The structure of this version of eval-exp is
almost identical to the previous version, just using the functions provided by the struct definitions instead
of our own list-processing functions. Defining expressions using the constructor functions is also similar:

(define test-exp (multiply (negate (add (const 2) (const 2))) (const 7)))

(define test-ans (eval-exp test-exp))

Why the struct Approach is Better

Defining structs is not syntactic sugar for the list approach we took first. The key distinction is that a struct
definition creates a new type of value. Given

(struct add (e1 e2) #:transparent)

the function add returns things that cause add? to return #t and every other type-testing function like
number?, pair?, null?, negate?, and multiply? to return #f. Similarly, the only way to access the e1

and e2 fields of an add value is with add-e1 and add-e2 — trying to use car, cdr, multiply-e1, etc. is a
run-time error. (Conversely, add-e1 and add-e2 raise errors for anything that is not an add.)

Notice that our first approach with lists does not have these properties. Something built from the Add

function we defined is a list, so pair? returns #t for it and we can, despite it being poor style, access the
pieces directly with car and cdr.

So in addition to being more concise, our struct-based approach is superior because it catches errors sooner.
Using cdr or Multiply-e2 on an addition expression in our arithmetic language is almost surely an error,
but our list-based approach sees it as nothing more or less than accessing a list using the Racket primitives
for doing so. Similarly, nothing prevents an ill-advised client of our code from writing (list ’Add "hello")

and yet our list-based Add? function would return #t given the result list ’(Add "hello").

That said, nothing about the struct definitions as we are using them here truly enforces invariants. In
particular, we would like to ensure the e1 and e2 fields of any add expression hold only other arithmetic
expressions. Racket has good ways to do that, but we are not studying them here. First, Racket has a
module system that we can use to expose to clients only parts of a struct definition, so we could hide the
constructor function and expose a different function that enforces invariants (much like we did with ML’s
module system).1 Second, Racket has a contract system that lets programmers define arbitrary functions to
use to check properties of struct fields, such as allowing only certain kinds of values to be in the fields.

Finally, we remark that Racket’s struct is a powerful primitive that cannot be described or defined in terms
of other things like function definitions or macro definitions. It really creates a new type of data. The feature
that the result from add causes add? to return #t but every other type-test to return #f is something that
no approach in terms of lists, functions, macros, etc. can do. Unless the language gives you a primitive for
making new types like this, any other encoding of arithmetic expressions would have to make values that
cause some other type test such as pair? or procedure? to return #t.

1Many people erroneously believe dynamically typed languages cannot enforce modularity like this. Racket’s structs, and
similar features in other languages, put the lie to this. You do not need abstract types and static typing to enforce ADTs. It
suffices to have a way to make new types and then not directly expose the constructors for these types.
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Implementing a Programming Language in General

While this course is mostly about what programming-language features mean and not how they are imple-
mented, implementing a small programming language is still an invaluable experience. First, one way great
way to understand the semantics of some features is to have to implement those features, which forces you
to think through all possible cases. Second, it dispels the idea that things like higher-order functions or
objects are “magic” since we can implement them in terms of simpler features. Third, many programming
tasks are analogous to implementing an interpreter for a programming language. For example, processing a
structured document like a pdf file and turning it into a rectangle of pixels for displaying is similar to taking
an input program and turning it into an answer.

We can describe a typical workflow for a language implementation as follows. First, we take a string holding
the concrete syntax of a program in the language. Typically this string would be the contents of one or
more files. The parser gives errors if this string is not syntactically well-formed, meaning the string cannot
possibly contain a program in the language due to things like misused keywords, misplaced parentheses,
etc. If there are no such errors, the parser produces a tree that represents the program. This is called the
abstract-syntax tree, or AST for short. It is a much more convenient representation for the next steps of the
language implementation. If our language includes type-checking rules or other reasons that an AST may
still not be a legal program, the type-checker will use this AST to either produce error messages or not. The
AST is then passed to the rest of the implementation.

There are basically two approaches to this rest-of-the-implementation for implementing some programming
language B. First, we could write an interpreter in another language A that takes programs in B and
produces answers. Calling such a program in A an “evaluator for B” or an “executor for B” probably makes
more sense, but “interpreter for B” has been standard terminology for decades. Second, we could write a
compiler in another language A that takes programs in B and produces equivalent programs in some other
language C (not the language C necessarily) and then uses some pre-existing implementation for C. For
compilation, we call B the source language and C the target language. A better term than “compiler” would
be “translator” but again the term compiler is ubiquitous. For either the interpreter approach or the compiler
approach, we call A, the language in which we are writing the implementation of B, the metalanguage.

While there are many “pure” interpreters and compilers, modern systems often combine aspects of each and
use multiple levels of interpretation and translation. For example, a typical Java system compiles Java source
code into a portable intermediate format. The Java “virtual machine” can then start interpreting code in
this format but get better performance by compiling the code further to code that can execute directly on
hardware. We can think of the hardware itself as an interpreter written in transistors, yet many modern
processors actually have translators in the hardware that convert the binary instructions into smaller simpler
instructions right before they are executed. There are many variations and enhancements to even this multi-
layered story of running programs, but fundamentally each step is some combination of interpretation or
translation.

A one-sentence sermon: Interpreter versus compiler is a feature of a particular programming-language imple-
mentation, not a feature of the programming language. One of the more annoying and widespread misconcep-
tions in computer science is that there are “compiled languages” such as C and “interpreted languages” such
as Racket. This is nonsense: I can write an interpreter for C or a compiler for Racket. (In fact, DrRacket
takes a hybrid approach not unlike Java.) There is a long history of C being implemented with compilers
and functional languages being implemented with interpreters, but compilers for functional languages have
been around for decades. SML N/J, for example, compiles each module/binding to binary code.
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Implementing a Programming Language Inside Another Language

Our eval-exp function above for arithmetic expressions is a perfect example of an interpreter for a small
programming language. The language here is exactly expressions properly built from the constructors for
constant, negation, addition, and multiplication expressions. The definition of “properly” depends on the
language; here we mean constants hold numbers and negations/additions/multiplications hold other proper
subexpressions. We also need a definition of values (i.e., results) for our little language, which again is part
of the language definition. Here we mean constants, i.e., the subset of expressions built from the const

constructor. Then eval-exp is an interpreter because it is a function that takes expressions in our language
and produces values in our language according to the rules for the semantics to our language. Racket is just
the metalanguage, the “other” language in which we write our interpreter.

What happened to parsing and type-checking? In short, we skipped them. By using Racket’s constructors,
we basically wrote our programs directly in terms of abstract-syntax trees, relying on having convenient
syntax for writing trees rather than having to make up a syntax and writing a parser. That is, we wrote
programs with expressions like:

(negate (add (const 2) (const 2)))

rather than some sort of string like "- (2 + 2)".

While embedding a language like arithmetic-expressions inside another language like Racket might seem
inconvenient compared to having special syntax, it has advantages even beyond not needing to write a
parser. For example, below we will see how we can use the metalanguage (Racket in this case) to write
things that act like macros for our language.

Assumptions and Non-Assumptions About Legal ASTs

There is a subtle distinction between two kinds of “wrong” ASTs in a language like our arithmetic expression
language. To make this distinction clearer, let’s extend our language with three more kinds of expressions:

(struct const (int) #:transparent) ; int should hold a number

(struct negate (e1) #:transparent) ; e1 should hold an expression

(struct add (e1 e2) #:transparent) ; e1, e2 should hold expressions

(struct multiply (e1 e2) #:transparent) ; e1, e2 should hold expressions

(struct bool (b) #:transparent) ; b should hold #t or #f

(struct if-then-else (e1 e2 e3) #:transparent) ; e1, e2, e3 should hold expressions

(struct eq-num (e1 e2) #:transparent) ; e1, e2 should hold expressions

The new features include booleans (either true or false), conditionals, and a construct for comparing two
numbers and returning a boolean (true if and only if the numbers are the same). Crucially, the result of
evaluating an expression in this language could now be:

• an integer, such as (const 17)

• a boolean, such as (bool true)

• non-existent because when we try to evaluate the program, we get a “run-time type error” – trying to
treat a boolean as a number or vice-versa
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In other words, there are now two types of values in our language – numbers and booleans – and there are
operations that should fail if a subexpression evaluates to the wrong kind of value.

This last possibility is something an interpreter should check for and give an appropriate error message. If
evaluating some kind of expression (e.g., addition) requires the result of evaluating subexpressions to have a
certain type (e.g., a number like (const 4) and not a boolean like (bool #t)), then the interpreter should
check for this result (e.g., using const?) rather than assuming the recursive result has the right type. That
way, the error message is appropriate (e.g., “argument to addition is not a number”) rather than something
in terms of the implementation of the interpreter.

The code posted with the course materials corresponding to these notes has two full interpreters for this
language. The first does not include any of this checking while the second, better one does. Calling the first
interpreter eval-exp-wrong and the second one eval-exp, here is just the addition case for both:

; eval-exp-wrong

[(add? e)

(let ([i1 (const-int (eval-exp-wrong (add-e1 e)))]

[i2 (const-int (eval-exp-wrong (add-e2 e)))])

(const (+ i1 i2)))]

; eval-exp

[(add? e)

(let ([v1 (eval-exp (add-e1 e))]

[v2 (eval-exp (add-e2 e))])

(if (and (const? v1) (const? v2))

(const (+ (const-int v1) (const-int v2)))

(error "add applied to non-number")))]

However, eval-exp is assuming that the expression it is evaluating is a legal AST for the language. It
can handle (add (const 2) (const 2)), which evaluates to (const 4) or (add (const 2) (bool #f)),
which encounters an error, but it does not gracefully handle (add #t #f) or (add 3 4). These are not legal
ASTs, according to the rules we have in comments, namely:

• The int field of a const should hold a Racket number.

• The b field of a bool should hold a Racket boolean.

• All other fields of expressions should hold other legal ASTs. (Yes, the definition is recursive.)

It is reasonable for an interpreter to assume it is given a legal AST, so it is okay for it to “just crash” with
a strange, implementation-dependent error message if given an illegal AST.

Interpreters for Languages With Variables Need Environments

The biggest thing missing from our arithmetic-expression language is variables. That is why we could just
have one recursive function that took an expression and returned a value. As we have known since the very
beginning of the course, since expressions can contain variables, evaluating them requires an environment
that maps variables to values. So an interpreter for a language with expressions needs a recursive helper
function that takes an expression and an environment and produces a value.2

2In fact, for languages with features like mutation or exceptions, the helper function needs even more parameters.
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The representation of the environment is part of the interpreter’s implementation in the metalanguage, not
part of the abstract syntax of the language. Many representations will suffice and fancy data structures that
provide fast access for commonly used variables are appropriate. But for our purposes, ignoring efficiency is
okay. Therefore, with Racket as our metalanguage, a simple association list holding pairs of strings (variable
names) and values (what the variables are bound to) can suffice.

Given an environment, the interpreter uses it differently in different cases:

• To evaluate a variable expression, it looks up the variable’s name (i.e., the string) in the environment.

• To evaluate most subexpressions, such as the subexpressions of an addition operation, the interpreter
passes to the recursive calls the same environment that was passed for evaluating the outer expression.

• To evaluate things like the body of a let-expression, the interpreter passes to the recursive call a slightly
different environment, such as the environment it was passed with one more binding (i.e., pair of string
and value) in it.

To evaluate an entire program, we just call our recursive helper function that takes an environment with the
program and a suitable initial environment, such as the empty environment, which has no bindings in it.

Implementing Closures

To implement a language with function closures and lexical scope, our interpreter needs to “remember” the
environment that “was current” when the function was defined so that it can use this environment instead
of the caller’s environment when the function is called. The “trick” to doing this is rather direct: We can
literally create a small data structure called a closure that includes the environment along with the function
itself. It is this pair (the closure) that is the result of interpreting a function. In other words, a function is not
a value, a closure is, so the evaluation of a function produces a closure that “remembers” the environment
from when we evaluated the function.

We also need to implement function calls. A call has two expressions e1 and e2 for what would look like
e1 e2 in ML or (e1 e2) in Racket. (We consider here one-argument functions, though the implementation
will naturally support currying for simulating multiple argument functions.) We evaluate a call as follows:

• We evaluate e1 using the current environment. The result should be a closure (else it is a run-time
error).

• We evaluate e2 using the current environment. The result will be the argument to the closure.

• We evaluate the body of the code part of the closure using the environment part of the closure
extended with the argument of the code part mapping to the argument at the call-site.

In the homework assignment connected to these course materials, there is an additional extension to the
environment for a variable that allows the closure to call itself recursively. But the key idea is the same: we
extend the environment-stored-with-the-closure to evaluate the closure’s function body.

This really is how interpreters implement closures. It is the semantics we learned when we first studied
closures, just “coded up” in an interpreter.
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Implementing Closures More Efficiently

It may seem expensive that we store the “whole current environment” in every closure. First, it is not that
expensive when environments are association lists since different environments are just extensions of each
other and we do not copy lists when we make longer lists with cons. (Recall this sharing is a big benefit of
not mutating lists, and we do not mutate environments.) Second, in practice we can save space by storing
only those parts of the environment that the function body might possibly use. We can look at the function
body and see what free variables it has (variables used in the function body whose definition are outside
the function body) and the environment we store in the closure needs only these variables. After all, no
execution of the closure can ever need to look up a variable from the environment if the function body has
no use of the variable. Language implementations precompute the free variables of each function before
beginning evaluation. They can store the result with each function so that this set of variables is quickly
available when building a closure.

Finally, you might wonder how compilers implement closures if the target language does not itself have
closures. As part of the translation, function definitions still evaluate to closures that have two parts, code
and environment. However, we do not have an interpreter with a “current environment” whenever we get
to a variable we need to look up. So instead, we change all the functions in the program to take an extra
argument (the environment) and change all function calls to explicitly pass in this extra argument. Now when
we have a closure, the code part will have an extra argument and the caller will pass in the environment
part for this argument. The compiler then just needs to translate all uses of free variables to code that uses
the extra argument to find the right value. In practice, using good data structures for environments (like
arrays) can make these variable lookups very fast (as fast as reading a value from an array).

Defining “Macros” Via Functions in the Metalanguage

When implementing an interpreter or compiler, it is essential to keep separate what is in the language being
implemented and what is in the language used for doing the implementation (the metalanguage). For example,
eval-exp is a Racket function that takes an arithmetic-expression-language expression (or whatever language
we are implementing) and produces an arithmetic-expression-language value. So for example, an arithmetic-
expression-language expression would never include a use of eval-exp or a Racket addition expression.

But since we are writing our to-be-evaluated programs in Racket, we can use Racket helper functions to help
us create these programs. Doing so is basically defining macros for our language using Racket functions as
the macro language. Here is an example:

(define (double e) ; takes language-implemented syntax and produces language-implemented syntax

(multiply e (const 2)))

Here double is a Racket function that takes the syntax for an arithmetic expression and produces the
syntax for an arithmetic expression. Calling double produces abstract syntax in our language, much like
macro expansion. For example, (negate (double (negate (const 4)))) produces (negate (multiply

(negate (const 4)) (const 2))). Notice this “macro” double does not evaluate the program in any way:
we produce abstract syntax that can then be evaluated, put inside a larger program, etc.

Being able to do this is an advantage of “embedding” our little language inside the Racket metalanguage.
The same technique works regardless of the choice of metalanguage. However, this approach does not handle
issues related to variable shadowing as well as a real macro system that has hygienic macros.

Here is a different “macro” that is interesting in two ways. First the argument is a Racket list of language-
being-implemented expressions (syntax). Second, the “macro” is recursive, calling itself once for each element
in the argument list:
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(define (list-product es)

(if (null? es)

(const 1)

(multiply (car es) (list-product (cdr es)))))

ML versus Racket

Before studying the general topic of static typing and the advantages/disadvantages thereof, it is interesting
to do a more specific comparison between the two languages we have studied so far, ML and Racket. The
languages are similar in many ways, with constructs that encourage a functional style (avoiding mutation,
using first-class closures) while allowing mutation where appropriate. The are also many differences, including
very different approaches to syntax, ML’s support for pattern-matching compared to Racket’s accessor
functions for structs, Racket’s multiple variants of let-expressions, etc.

But the most widespread difference between the two languages is that ML has a static type system that
Racket does not.3

We study below precisely what a static type system is, what ML’s type system guarantees, and what the
advantages and disadvantages of static typing are. Anyone who has programmed in ML and Racket probably
already has some ideas on these topics, naturally: ML rejects lots of programs before running them by doing
type-checking and reporting errors. To do so, ML enforces certain restrictions (e.g., all elements of a list
must have the same type). As a result, ML ensures the absence of certain errors (e.g., we will never try to
pass a string to the addition operator) “at compile time.”

More interestingly, could we describe ML and its type system in terms of ideas more Racket-like and,
conversely, could we describe Racket-style programming in terms of ML? It turns out we can and that doing
so is both mind-expanding and a good precursor to subsequent topics.

First consider how a Racket programmer might view ML. Ignoring syntax differences and other issues, we
can describe ML as roughly defining a subset of Racket: Programs that run produce similar answers, but ML
rejects many more programs as illegal, i.e., not part of the language. What is the advantage of that? ML is de-
signed to reject programs that are likely bugs. Racket allows programs like (define (f y) (+ y (car y))),
but any call to f would cause an error, so this is hardly a useful program. So it is helpful that ML rejects
this program rather than waiting until a programmer tests f. Similarly, the type system catches bugs due
to inconsistent assumptions by different parts of the program. The functions (define (g x) (+ x x))

and (define (h z) (g (cons z 2))) are both sensible by themselves, but if the g in h is bound to this
definition of g, then any call to h fails much like any call to f. On the other hand, ML rejects Racket-like
programs that are not bugs as well. For example, in this code, both the if-expression and the expression
bound to xs would not type-check but represent reasonable Racket idioms depending on circumstances:

(define (f x) (if (> x 0) #t (list 1 2)))

(define xs (list 1 #t "hi"))

(define y (f (car xs)))

So now how might an ML programmer view Racket? One view is just the reverse of the discussion above,
that Racket accepts a superset of programs, some of which are errors and some of which are not. A more
interesting view is that Racket is just ML where every expression is part of one big datatype. In this view,
the result of every computation is implicitly “wrapped” by a constructor into the one big datatype and

3There is a related language Typed Racket also available within the DrRacket system that interacts well with Racket and
many other languages — allowing you to mix files written in different languages to build applications. We will not study that
in this course, so we refer here only to the language Racket.
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primitives like + have implementations that check the “tags” of their arguments (e.g., to see if they are
numbers) and raise errors as appropriate. In more detail, it is like Racket has this one datatype binding:

datatype theType = Int of int

| String of string

| Pair of theType * theType

| Fun of theType -> theType

| ... (* one constructor per built-in type *)

Then it is like when programmers write something like 42, it is implicitly really Int 42 so that the result
of every expression has type theType. Then functions like + raise errors if both arguments do not have the
right constructor and their result is also wrapped with the right constructor if necessary. For example, we
could think of car as being:

fun car v = case v of Pair(a,b) => a | _ => raise ... (* give some error *)

Since this “secret pattern-matching” is not exposed to programmers, Racket also provides which-constructor
functions that programmers can use instead. For example, the primitive pair? can be viewed as:

fun pair? v = case v of Pair _ => true | _ => false

Finally, Racket’s struct definitions do one thing you cannot quite do with ML datatype bindings: They
dynamically add new constructors to a datatype.4

The fact that we can think of Racket in terms of theType suggests that anything you can do in Racket can be
done, perhaps more awkwardly, in ML: The ML programmer could just program explicitly using something
like the theType definition above.

What is Static Checking?

What is usually meant by “static checking” is anything done to reject a program after it (successfully) parses
but before it runs. If a program does not parse, we still get an error, but we call such an error a “syntax
error” or “parsing error.” In contrast, an error from static checking, typically a “type error,” would include
things like undefined variables or using a number instead of a pair. We do static checking without any
input to the program identified — it is “compile-time checking” though it is irrelevant whether the language
implementation will use a compiler or an interpreter after static checking succeeds.

What static checking is performed is part of the definition of a programming language. Different languages
can do different things; some language do no static checking at all. Given a language with a particular
definition, you could also use other tools that do even more static checking to try to find bugs or ensure
their absence even though such tools are not part of the language definition.

The most common way to define a language’s static checking is via a type system. When we studied ML
(and when you learned Java), we gave typing rules for each language construct: Each variable had a type,
the two branches of a conditional must have the same type, etc. ML’s static checking is checking that these
rules are followed (and in ML’s case, inferring types to do so). But this is the language’s approach to static
checking (how it does it), which is different from the purpose of static checking (what it accomplishes). The
purpose is to reject programs that “make no sense” or “may try to misuse a language feature.” There are

4You can do this in ML with the exn type, but not with datatype bindings. If you could, static checking for missing
pattern-matching clauses would not be possible.
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errors a type system typically does not prevent (such as array-bounds errors) and others that a type system
cannot prevent unless given more information about what a program is supposed to do. For example, if a
program puts the branches of a conditional in the wrong order or calls + instead of *, this is still a program
just not the one intended.

For example, one purpose of ML’s type system is to prevent passing strings to arithmetic primitives like the
division operator. In contrast, Racket uses “dynamic checking” (i.e., run-time checking) by tagging each
value and having the division operator check that its arguments are numbers. The ML implementation does
not have to tag values for this purpose because it can rely on static checking. But as we will discuss below,
the trade-off is that the static checker has to reject some programs that would not actually do anything
wrong.

As ML and Racket demonstrate, the typical points at which to prevent a “bad thing” are “compile-time”
and “run-time.” However, it is worth realizing that there is really a continuum of eagerness about when we
declare something an error. Consider for sake of example something that most type systems do not prevent
statically: division-by-zero. If we have some function containing the expression (/ 3 0), when could we
cause an error:

• Keystroke-time: Adjust the editor so that one cannot even write down a division with a denominator
of 0. This is approximate because maybe we were about to write 0.33, but we were not allowed to
write the 0.

• Compile-time: As soon as we see the expression. This is approximate because maybe the context is
(if #f (/ 3 0) 42).

• Link-time: Once we see the function containing (/ 3 0) might be called from some “main” function.
This is less approximate than compile-time since some code might never be used, but we still have to
approximate what code may be called.

• Run-time: As soon as we execute the division.

• Even later: Rather than raise an error, we could just return some sort of value indicating division-by-
zero and not raise an error until that value was used for something where we needed an actual number,
like indexing into an array.

While the “even later” option might seem too permissive at first, it is exactly what floating-point computa-
tions do. (/ 3.0 0.0) produces +inf.0, which can still be computed with but cannot be converted to an
exact number. In scientific computing this is very useful to avoid lots of extra cases: maybe we do something
like take the tangent of π/2 but only when this will end up not being used in the final answer.

Correctness: Soundness, Completeness, Undecidability

Intuitively, a static checker is correct if it prevents what it claims to prevent — otherwise, either the language
definition or the implementation of static checking needs to be fixed. But we can give a more precise
description of correctness by defining the terms soundness and completeness. For both, the definition is with
respect to some thing X we wish to prevent. For example, X could be “a program looks up a variable that
is not in the environment.”

A type system is sound if it never accepts a program that, when run with some input, does X.

A type system is complete if it never rejects a program that, no matter what input it is run with, will not
do X.
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A good way to understand these definitions is that soundness prevents false negatives and completeness
prevents false positives. The terms false negatives and false positives come from statistics and medicine:
Suppose there is a medical test for a disease, but it is not a perfect test. If the test does not detect the
disease but the patient actually has the disease, then this is a false negative (the test was negative, but that
is false). If the test detects the disease but the patient actually does not have the disease, then this is a false
positive (the test was positive, but that’s false). With static checking, the disease is “performs X when run
with some input” and the test is “does the program type-check?” The terms soundness and completeness
come from logic and are commonly used in the study of programming languages. A sound logic proves only
true things. A complete logic proves all true things. Here, our type system is the logic and the thing we are
trying to prove is “X cannot occur.”

In modern languages, type systems are sound (they prevent what they claim to) but not complete (they
reject programs they need not reject). Soundness is important because it lets language users and language
implementers rely on X never happening. Completeness would be nice, but hopefully it is rare in practice
that a program is rejected unnecessarily and in those cases, hopefully it is easy for the programmer to modify
the program such that it type-checks.

Type systems are not complete because for almost anything you might like to check statically, it is impossible
to implement a static checker that given any program in your language (a) always terminates, (b) is sound,
and (c) is complete. Since we have to give up one, (c) seems like the best option (programmers do not like
compilers that may not terminate).

The impossibility result is exactly the idea of undecidability at the heart of the study of the theory of
computation. It is an essential topic in a required course (CSE 311). Knowing what it means that nontrivial
properties of programs are undecidable is fundamental to being an educated computer scientist. The fact
that undecidability directly implies the inherent approximation (i.e., incompleteness) of static checking is
probably the most important ramification of undecidability. We simply cannot write a program that takes as
input another program in ML/Racket/Java/etc. that always correctly answers questions such as, “will this
program divide-by-zero?” “will this program treat a string as a function?” “will this program terminate?”
etc.

Weak Typing

Now suppose a type system is unsound for some property X. Then to be safe the language implementation
should still, at least in some cases, perform dynamic checks to prevent X from happening and the language
definition should allow that these checks might fail at run-time.

But an alternative is to say it is the programmer’s fault if X happens and the language definition does
not have to check. In fact, if X happens, then the running program can do anything : crash, corrupt data,
produce the wrong answer, delete files, launch a virus, or set the computer on fire. If a language has programs
where a legal implementation is allowed to set the computer on fire (even though it probably would not), we
call the language weakly typed. Languages where the behavior of buggy programs is more limited are called
strongly typed. These terms are a bit unfortunate since the correctness of the type system is only part of
the issue. After all, Racket is dynamically typed but nonetheless strongly typed. Moreover, a big source of
actual undefined and unpredictable behavior in weakly typed languages is array-bounds errors (they need
not check the bound — they can just access some other data by mistake), yet few type systems check array
bounds.

C and C++ are the well-known weakly typed languages. Why are they defined this way? In short, because
the designers do not want the language definition to force implementations to do all the dynamic checks
that would be necessary. While there is a time cost to performing checks, the bigger problem is that the
implementation has to keep around extra data (like tags on values) to do the checks and C/C++ are designed
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as lower-level languages where the programmer can expect extra “hidden fields” are not added.

An older now-much-rarer perspective in favor of weak typing is embodied by the saying “strong types for weak
minds.” The idea is that any strongly typed language is either rejecting programs statically or performing
unnecessary tests dynamically (see undecidability above), so a human should be able to “overrule” the checks
in places where he/she knows they are unnecessary. In reality, humans are extremely error-prone and we
should welcome automatic checking even if it has to err on the side of caution for us. Moreover, type systems
have gotten much more expressive over time (e.g., polymorphic) and language implementations have gotten
better at optimizing away unnecessary checks (they will just never get all of them). Meanwhile, software
has gotten very large, very complex, and relied upon by all of society. It is deeply problematic that 1 bug in
a 30-million-line operating system written in C can make the entire computer subject to security exploits.
While this is still a real problem and C the language provides little support, it is increasingly common to
use other tools to do static and/or dynamic checking with C code to try to prevent such errors.

More Flexible Primitives is a Related but Different Issue

Suppose we changed ML so that the type system accepted any expression e1 + e2 as long as e1 and e2

had some type and we changed the evaluation rules of addition to return 0 if one of the arguments did not
result in a number. Would this make ML a dynamically typed language? It is “more dynamic” in the sense
that the language is more lenient and some “likely” bugs are not detected as eagerly, but there is still a
type system rejecting programs — we just changed the definition of what an “illegal” operation is to allow
more additions. We could have similarly changed Racket to not give errors if + is given bad arguments. The
Racket designers choose not to do so because it is likely to mask bugs without being very useful.

Other languages make different choices that report fewer errors by extending the definition of primitive
operations to not be errors in situations like this. In addition to defining arithmetic over any kind of data,
some examples are:

• Allowing out-of-bound array accesses. For example, if arr has fewer than 10 elements, we can still
allow arr[10] by just returning a default value or arr[10]=e by making the array bigger.

• Allowing function calls with the wrong number of arguments. Extra arguments can be silently ignored.
Too few arguments can be filled in with defaults chosen by the language.

These choices are matters of language design. Giving meaning to what are likely errors is often unwise — it
masks errors and makes them more difficult to debug because the program runs long after some nonsense-
for-the-application computation occurred. On the other hand, such “more dynamic” features are used by
programmers when provided, so clearly someone is finding them useful.

For our purposes here, we just consider this a separate issue from static vs. dynamic typing. Instead of
preventing some X (e.g., calling a function with too many arguments) either before the program runs or
when it runs, we are changing the language semantics so that we do not prevent X at all – we allow it and
extend our evaluation rules to give it a semantics.

Advantages and Disadvantages of Static Checking

Now that we know what static and dynamic typing are, let’s wade into the decades-old argument about
which is better. We know static typing catches many errors for you early, soundness ensures certain kinds
of errors do not remain, and incompleteness means some perfectly fine programs are rejected. We will not
answer definitively whether static typing is desirable (if nothing else it depends what you are checking), but
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we will consider seven specific claims and consider for each valid arguments made both for and against static
typing.

1. Is Static or Dynamic Typing More Convenient?

The argument that dynamic typing is more convenient stems from being able to mix-and-match different
kinds of data such as numbers, strings, and pairs without having to declare new type definitions or “clutter”
code with pattern-matching. For example, if we want a function that returns either a number or string, we
can just return a number or a string, and callers can use dynamic type predicates as necessary. In Racket,
we can write:

(define (f y) (if (> y 0) (+ y y) "hi"))

(let ([ans (f x)]) (if (number? ans) (number->string ans) ans))

In contrast, the analogous ML code needs to use a datatype, with constructors in f and pattern-matching
to use the result:

datatype t = Int of int | String of string

fun f y = if y > 0 then Int(y+y) else String "hi"

val _ = case f x of Int i => Int.toString i | String s => s

On the other hand, static typing makes it more convenient to assume data has a certain type, knowing that
this assumption cannot be violated, which would lead to errors later. For a Racket function to ensure some
data is, for example, a number, it has to insert an explicit dynamic check in the code, which is more work
and harder to read. The corresponding ML code has no such awkwardness.

(define (cube x)

(if (not (number? x))

(error "cube expects a number")

(* x x x)))

(cube 7)

fun cube x = x * x * x

val _ = cube 7

Notice that without the check in the Racket code, the actual error would arise in the body of the multipli-
cation, which could confuse callers that did not know cube was implemented using multiplication.

2. Does Static Typing Prevent Useful Programs?

Dynamic typing does not reject programs that make perfect sense. For example, the Racket code below
binds ’((7 . 7) . (#t . #t)) to pair_of_pairs without problem, but the corresponding ML code does
not type-check since there is no type the ML type system can give to f.5

(define (f g) (cons (g 7) (g #t)))

5This is a limitation of ML. There are languages with more expressive forms of polymorphism that can type-check such code.
But due to undecidability, there are always limitations.
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(define pair_of_pairs (f (lambda (x) (cons x x))))

fun f g = (g 7, g true) (* does not type-check *)

val pair_of_pairs = f (fn x => (x,x))

Of course we can write an ML program that produces ((7,7),(true,true)), but we may have to “work
around the type-system” rather than do it the way we want.

On the other hand, dynamic typing derives its flexibility from putting a tag on every value. In ML and
other statically typed languages, we can do the same thing when we want to by using datatypes and explicit
tags. In the extreme, if you want to program like Racket in ML, you can use a datatype to represent “The
One Racket Type” and insert explicit tags and pattern-matching everywhere. While this programming style
would be painful to use everywhere, it proves the point that there is nothing we can do in Racket that we
cannot do in ML. (We discussed this briefly already above.)

datatype tort = Int of int

| String of string

| Pair of tort * tort

| Fun of tort -> tort

| Bool of bool

| ...

fun f g = (case g of Fun g’ => Pair(g’ (Int 7), g’ (Bool true)))

val pair_of_pairs = f (Fun (fn x => Pair(x,x)))

Perhaps an even simpler argument in favor of static typing is that modern type systems are expressive enough
that they rarely get in your way. How often do you try to write a function like f that does not type-check
in ML?

3. Is Static Typing’s Early Bug-Detection Important?

A clear argument in favor of static typing is that it catches bugs earlier, as soon you statically check
(informally, “compile”) the code. A well-known truism of software development is that bugs are easier to fix
if discovered sooner, while the developer is still thinking about the code. Consider this Racket program:

(define (pow x)

(lambda (y)

(if (= y 0)

1

(* x (pow x (- y 1))))))

While the algorithm looks correct, this program has a bug: pow expects curried arguments, but the recursive
call passes pow two arguments, not via currying. This bug is not discovered until testing pow with a y not
equal to 0. The equivalent ML program simply does not type-check:

fun pow x y = (* does not type-check *)

if y = 0

then 1

else x * pow (x,y-1)
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Because static checkers catch known kinds of errors, expert programmers can use this knowledge to focus
attention elsewhere. A programmer might be quite sloppy about tupling versus currying when writing down
most code, knowing that the type-checker will later give a list of errors that can be quickly corrected. This
could free up mental energy to focus on other tasks, like array-bounds reasoning or higher-level algorithm
issues.

A dynamic-typing proponent would argue that static checking usually catches only bugs you would catch
with testing anyway. Since you still need to test your program, the additional value of catching some bugs
before you run the tests is reduced. After all, the programs below do not work as exponentiation functions
(they use the wrong arithmetic), ML’s type system will not detect this, and testing catches this bug and
would also catch the currying bug above.

(define (pow x) ; wrong algorithm

(lambda (y)

(if (= y 0)

1

(+ x ((pow x) (- y 1))))))

fun pow x y = (* wrong algorithm *)

if y = 0

then 1

else x + pow x (y - 1)

4. Does Static or Dynamic Typing Lead to Better Performance?

Static typing can lead to faster code since it does not need to perform type tests at run time. In fact,
much of the performance advantage may result from not storing the type tags in the first place, which takes
more space and slows down constructors. In ML, there are run-time tags only where the programmer uses
datatype constructors rather than everywhere.

Dynamic typing has three reasonable counterarguments. First, this sort of low-level performance does
not matter in most software. Second, implementations of dynamically typed language can and do try to
optimize away type tests it can tell are unnecessary. For example, in (let ([x (+ y y)]) (* x 4)), the
multiplication does not need to check that x and 4 are numbers and the addition can check y only once.
While no optimizer can remove all unnecessary tests from every program (undecidability strikes again), it
may be easy enough in practice for the parts of programs where performance matters. Third, if programmers
in statically typed languages have to work around type-system limitations, then those workarounds can erode
the supposed performance advantages. After all, ML programs that use datatypes have tags too.

5. Does Static or Dynamic Typing Make Code Reuse Easier?

Dynamic typing arguably makes it easier to reuse library functions. After all, if you build lots of different
kinds of data out of cons cells, you can just keep using car, cdr, cadr, etc. to get the pieces out rather than
defining lots of different getter functions for each data structure. On the other hand, this can mask bugs.
For example, suppose you accidentally pass a list to a function that expects a tree. If cdr works on both of
them, you might just get the wrong answer or cause a mysterious error later, whereas using different types
for lists and trees could catch the error sooner.

This is really an interesting design issue more general than just static versus dynamic typing. Often it is
good to reuse a library or data structure you already have especially since you get to reuse all the functions
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available for it. Other times it makes it too difficult to separate things that are really different conceptually
so it is better to define a new type. That way the static type-checker or a dynamic type-test can catch when
you put the wrong thing in the wrong place.

6. Is Static or Dynamic Typing Better for Prototyping?

Early in a software project, you are developing a prototype, often at the same time you are changing your
views on what the software will do and how the implementation will approach doing it.

Dynamic typing is often considered better for prototyping since you do not need to expend energy defining
the types of variables, functions, and data structures when those decisions are in flux. Moreover, you may
know that part of your program does not yet make sense (it would not type-check in a statically typed
language), but you want to run the rest of your program anyway (e.g., to test the parts you just wrote).

Static typing proponents may counter that it is never too early to document the types in your software design
even if (perhaps especially if) they are unclear and changing. Moreover, commenting out code or adding
stubs like pattern-match branches of the form _ => raise Unimplemented is often easy and documents
what parts of the program are known not to work.

7. Is Static or Dynamic Typing Better for Code Evolution?

A lot of effort in software engineering is spent maintaining working programs, by fixing bugs, adding new
features, and in general evolving the code to make some change.

Dynamic typing is sometimes more convenient for code evolution because we can change code to be more
permissive (accept arguments of more types) without having to change any of the pre-existing clients of the
code. For example, consider changing this simple function:

(define (f x) (* 2 x))

to this version, which can process numbers or strings:

(define (f x)

(if (number? x)

(* 2 x)

(string-append x x)))

No existing caller, which presumably uses f with numbers, can tell this change was made, but new callers
can pass in strings or even values where they do not know if the value is a number or a string. If we make
the analogous change in ML, no existing callers will type-check since they all must wrap their arguments in
the Int constructor and use pattern-matching on the function result:

fun f x = 2 * x

datatype t = Int of int | String of string

fun f x =

case f x of

Int i => Int (2 * i)

| String s => String (s ^ s)
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On the other hand, static type-checking is very useful when evolving code to catch bugs that the evolution
introduces. When we change the type of a function, all callers no longer type-check, which means the type-
checker gives us an invaluable “to-do list” of all the call-sites that need to change. By this argument, the
safest way to evolve code is to change the types of any functions whose specification is changing, which is
an argument for capturing as much of your specification as you can in the types.

A particularly good example in ML is when you need to add a new constructor to a datatype. If you did
not use wildcard patterns, then you will get a warning for all the case-expressions that use the datatype.

As valuable as the “to-do list from the type-checker” is, it can be frustrating that the program will not run
until all items on the list are addressed or, as discussed under the previous claim, you use comments or stubs
to remove the parts not yet evolved.

Optional: eval and quote

(This short description barely scratches the surface of programming with eval. It really just introduces the
concept. Interested students are encouraged to learn more on their own.)

There is one sense where it is slightly fair to say Racket is an interpreted language: it has a primitive eval

that can take a representation of a program at run-time and evaluate it. For example, this program, which
is poor style because there are much simpler ways to achieve its purpose, may or may not print something
depending on x:

(define (make-some-code y)

(if y

(list ’begin (list ’print "hi") (list ’+ 4 2))

(list ’+ 5 3)))

(define (f x)

(eval (make-some-code x)))

The Racket function make-some-code is strange: It does not ever print or perform an addition. All it does
is return some list containing symbols, strings, and numbers. For example, if called with #t, it returns

’(begin (print "hi") (+ 4 2))

This is nothing more and nothing less than a three element list where the first element is the symbol begin.
It is just Racket data. But if we look at this data, it looks just like a Racket program we could run. The
nested lists together are a perfectly good representation of a Racket expression that, if evaluated, would
print "hi" and have a result of 6.

The eval primitive takes such a representation and, at run-time, evaluates it. We can perform whatever
computation we want to generate the data we pass to eval. As a simple example, we could append together
two lists, like (list ’+ 2) and (list 3 4). If we call eval with the result ’(+ 2 3 4), i.e., a 4-element
list, then eval returns 9.

Many languages have eval, many do not, and what the appropriate idioms for using it are is a subject of
significant dispute. Most would agree it tends to get overused but is also a really powerful construct that is
sometimes what you want.

Can a compiler-based language implementation (notice we did not say “compiled language”) deal with eval?
Well, it would need to have the compiler or an interpreter around at run-time since it cannot know in advance
what might get passed to eval. An interpreter-based language implementation would also need an interpreter
or compiler around at run-time, but, of course, it already needs that to evaluate the “regular program.”
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In languages like Javascript and Ruby, we do not have the convenience of Racket syntax where programs
and lists are so similar-looking that eval can take a list-representation that looks exactly like Racket syntax.
Instead, in these languages, eval takes a string and interprets it as concrete syntax by first parsing it and
then running it. Regardless of language, eval will raise an error if given an ill-formed program or a program
that raises an error.

In Racket, it is painful and unnecessary to write make-some-code the way we did. Instead, there is a special
form quote that treats everything under it as symbols, numbers, lists, etc., not as functions to be called. So
we could write:

(define (make-some-code y)

(if y

(quote (begin (print "hi") (+ 4 2)))

(quote (+ 5 3))))

Interestingly, eval and quote are inverses: For any expression e, we should have (eval (quote e)) as a
terrible-style but equivalent way to write e.

Often quote is “too strong” — we want to quote most things, but it is convenient to evaluate some code
inside of what is mostly syntax we are building. Racket has quasiquote and unquote for doing this (see the
manual if interested) and Racket’s linguistic predecessors have had this functionality for decades. In modern
scripting languages, one often sees analogous functionality: the ability to embed expression evaluation inside
a string (which one might or might not then call eval on, just as one might or might not use a Racket
quote expression to build something for eval). This feature is sometimes called interpolation in scripting
languages, but it is just quasiquoting.
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