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OOP Versus Functional Decomposition

We can compare procedural (functional) decomposition and object-oriented decomposition using the classic
example of implementing operations for a small expression language. In functional programming, we typically
break programs down into functions that perform some operation. In OOP, we typically break programs
down into classes that give behavior to some kind of data.

We show that the two approaches largely lay out the same ideas in exactly opposite ways, and which way
is “better” is either a matter of taste or depends on how software might be changed or extended in the
future. We then consider how both approaches deal with operations over multiple arguments, which in many
object-oriented languages requires a technique called double (multiple) dispatch in order to stick with an
object-oriented style.
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The Basic Set-Up

The following problem is the canonical example of a common programming pattern, and, not coincidentally,
is a problem we have already considered a couple times in the course. Suppose we have:

• Expressions for a small “language” such as for arithmetic

• Different variants of expressions, such as integer values, negation expressions, and addition expressions

• Different operations over expressions, such as evaluating them, converting them to strings, or deter-
mining if they contain the constant zero in them

This problem leads to a conceptual matrix (two-dimensional grid) with one entry for each combination of
variant and operation:

eval toString hasZero
Int

Add
Negate

No matter what programming language you use or how you approach solving this programming problem,
you need to indicate what the proper behavior is for each entry in the grid. Certain approaches or languages
might make it easier to specify defaults, but you are still deciding something for every entry.

The Functional Approach

In functional languages, the standard style is to do the following:

• Define a datatype for expressions, with one constructor for each variant. (In a dynamically typed
language, we might not give the datatype a name in our program, but we are still thinking in terms of
the concept. Similarly, in a language without direct support for constructors, we might use something
like lists, but we are still thinking in terms of defining a way to construct each variant of data.)

• Define a function for each operation.

• In each function, have a branch (e.g., via pattern-matching) for each variant of data. If there is a
default for many variants, we can use something like a wildcard pattern to avoid enumerating all the
branches.

Note this approach is really just procedural decomposition: breaking the problem down into procedures
corresponding to each operation.

This ML code shows the approach for our example: Notice how we define all the kinds of data in one place
and then the nine entries in the table are implemented “by column” with one function for each column:

exception BadResult of string

datatype exp =

Int of int

| Negate of exp

| Add of exp * exp

fun eval e =

case e of
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Int _ => e

| Negate e1 => (case eval e1 of

Int i => Int (~i)

| _ => raise BadResult "non-int in negation")

| Add(e1,e2) => (case (eval e1, eval e2) of

(Int i, Int j) => Int (i+j)

| _ => raise BadResult "non-ints in addition")

fun toString e =

case e of

Int i => Int.toString i

| Negate e1 => "-(" ^ (toString e1) ^ ")"

| Add(e1,e2) => "(" ^ (toString e1) ^ " + " ^ (toString e2) ^ ")"

fun hasZero e =

case e of

Int i => i=0

| Negate e1 => hasZero e1

| Add(e1,e2) => (hasZero e1) orelse (hasZero e2)

The Object-Oriented Approach

In object-oriented languages, the standard style is to do the following:

• Define a class for expressions, with one abstract method for each operation. (In a dynamically typed
language, we might not actually list the abstract methods in our program, but we are still thinking in
terms of the concept. Similarly, in a language with duck typing, we might not actually use a superclass,
but we are still thinking in terms of defining what operations we need to support.)

• Define a subclass for each variant of data.

• In each subclass, have a method definition for each operation. If there is a default for many variants,
we can use a method definition in the superclass so that via inheritance we can avoid enumerating all
the branches.

Note this approach is a data-oriented decomposition: breaking the problem down into classes corresponding
to each data variant.

Here is the Ruby code, which for clarity has the different kinds of expressions subclass the Exp class. In a
statically typed language, this would be required and the superclass would have to declare the methods that
every subclass of Exp defines — listing all the operations in one place. Notice how we define the nine entries
in the table “by row” with one class for each row.

class Exp

# could put default implementations or helper methods here

end

class Int < Exp

attr_reader :i

def initialize i

@i = i

end

def eval

self
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end

def toString

@i.to_s

end

def hasZero

i==0

end

end

class Negate < Exp

attr_reader :e

def initialize e

@e = e

end

def eval

Int.new(-e.eval.i) # error if e.eval has no i method (not an Int)

end

def toString

"-(" + e.toString + ")"

end

def hasZero

e.hasZero

end

end

class Add < Exp

attr_reader :e1, :e2

def initialize(e1,e2)

@e1 = e1

@e2 = e2

end

def eval

Int.new(e1.eval.i + e2.eval.i) # error if e1.eval or e2.eval have no i method

end

def toString

"(" + e1.toString + " + " + e2.toString + ")"

end

def hasZero

e1.hasZero || e2.hasZero

end

end

The Punch-Line

So we have seen that functional decomposition breaks programs down into functions that perform some
operation and object-oriented decomposition breaks programs down into classes that give behavior to some
kind of data. These are so exactly opposite that they are the same — just deciding whether to lay out our
program “by column” or “by row.” Understanding this symmetry is invaluable in conceptualizing software
or deciding how to decompose a problem. Moreover, various software tools and IDEs can help you view a
program in a different way than the source code is decomposed. For example, a tool for an OOP language
that shows you all methods foo that override some superclass’ foo is showing you a column even though
the code is organized by rows.

So, which is better? It is often a matter of personal preference whether it seems “more natural” to lay out
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the concepts by row or by column, so you are entitled to your opinion. What opinion is most common can
depend on what the software is about. For our expression problem, the functional approach is probably
more popular: it is “more natural” to have the cases for eval together rather than the operations for Negate
together. For problems like implementing graphical user interfaces, the object-oriented approach is probably
more popular: it is “more natural” to have the operations for a kind of data (like a MenuBar) together (such as
backgroundColor, height, and doIfMouseIsClicked rather than have the cases for doIfMouseIsClicked

together (for MenuBar, TextBox, SliderBar, etc.). The choice can also depend on what programming
language you are using, how useful libraries are organized, etc.

Extending the Code With New Operations or Variants

The choice between “rows” and “columns” becomes less subjective if we later extend our program by adding
new data variants or new operations.

Consider the functional approach. Adding a new operation is easy: we can implement a new function without
editing any existing code. For example, this function creates a new expression that evaluates to the same
result as its argument but has no negative constants:

fun noNegConstants e =

case e of

Int i => if i < 0 then Negate (Int(~i)) else e

| Negate e1 => Negate(noNegConstants e1)

| Add(e1,e2) => Add(noNegConstants e1, noNegConstants e2)

On the other hand, adding a new data variant, such as Mult of exp * exp is less pleasant. We need to go
back and change all our functions to add a new case. In a statically typed language, we do get some help:
after adding the Mult constructor, if our original code did not use wildcard patterns, then the type-checker
will give a non-exhaustive pattern-match warning everywhere we need to add a case for Mult.

Again the object-oriented approach is exactly the opposite. Adding a new variant is easy: we can implement a
new subclass without editing any existing code. For example, this Ruby class adds multiplication expressions
to our language:

class Mult < Exp

attr_reader :e1, :e2

def initialize(e1,e2)

@e1 = e1

@e2 = e2

end

def eval

Int.new(e1.eval.i * e2.eval.i) # error if e1.eval or e2.eval has no i method

end

def toString

"(" + e1.toString + " * " + e2.toString + ")"

end

def hasZero

e1.hasZero || e2.hasZero

end

end

On the other hand, adding a new operation, such as noNegConstants, is less pleasant. We need to go back
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and change all our classes to add a new method. In a statically typed language, we do get some help: after
declaring in the Exp superclass that all subclasses should have a noNegConstants method, the type-checker
will give an error for any class that needs to implement the method. (This static typing is using abstract
methods and abstract classes, which are discussed later.)

Planning for extensibility

As seen above, functional decomposition allows new operations and object-oriented decomposition allows new
variants without modifying existing code and without explicitly planning for it — the programming styles
“just work that way.” It is possible for functional decomposition to support new variants or object-oriented
decomposition to support new operations if you plan ahead and use somewhat awkward programming tech-
niques (that seem less awkward over time if you use them often).

We do not consider these techniques in detail here and you are not responsible for learning them. For object-
oriented programming, “the visitor pattern” is a common approach. This pattern often is implemented using
double dispatch, which is covered for other purposes below. For functional programming, we can define our
datatypes to have an “other” possibility and our operations to take in a function that can process the “other
data.” Here is the idea in SML:

datatype ’a ext_exp =

Int of int

| Negate of ’a ext_exp

| Add of ’a ext_exp * ’a ext_exp

| OtherExtExp of ’a

fun eval_ext (f,e) = (* notice we pass a function to handle extensions *)

case e of

Int i => i

| Negate e1 => 0 - (eval_ext (f,e1))

| Add(e1,e2) => (eval_ext (f,e1)) + (eval_ext (f,e2))

| OtherExtExp e => f e

With this approach, we could create an extension supporting multiplication by instantiating ’a with exp * exp,
passing eval_ext the function (fn (x,y) => eval_ext(f,e1) * eval_ext(f,e2)), and using OtherExtExp(e1,e2)
for multiplying e1 and e2. This approach can support different extensions, but it does not support well com-
bining two extensions created separately.

Notice that it does not work to wrap the original datatype in a new datatype like this:

datatype myexp_wrong =

OldExp of exp

| MyMult of myexp_wrong * myexp_wrong

This approach does not allow, for example, a subexpression of an Add to be a MyMult.

Thoughts on Extensibility

It seems clear that if you expect new operations, then a functional approach is more natural and if you
expect new data variants, then an object-oriented approach is more natural. The problems are (1) the future
is often difficult to predict; we may not know what extensions are likely, and (2) both forms of extension
may be likely. Newer languages like Scala aim to support both forms of extension well; we are still gaining
practical experience on how well it works as it is a fundamentally difficult issue.

More generally, making software that is both robust and extensible is valuable but difficult. Extensibility
can make the original code more work to develop, harder to reason about locally, and harder to change
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(without breaking extensions). In fact, languages often provide constructs exactly to prevent extensibility.
ML’s modules can hide datatypes, which prevents defining new operations over them outside the module.
Java’s final modifier on a class prevents subclasses.

Binary Methods With Functional Decomposition

The operations we have considered so far used only one value of a type with multiple data variants: eval,
toString, hasZero, and noNegConstants all operated on one expression. When we have operations that
take two (binary) or more (n-ary) variants as arguments, we often have many more cases. With functional
decomposition all these cases are still covered together in a function. As seen below, the OOP approach is
more cumbersome.

For sake of example, suppose we add string values and rational-number values to our expression language.
Further suppose we change the meaning of Add expressions to the following:

• If the arguments are ints or rationals, do the appropriate arithmetic.

• If either argument is a string, convert the other argument to a string (unless it already is one) and
return the concatenation of the strings.

So it is an error to have a subexpression of Negate or Mult evaluate to a String or Rational, but the
subexpressions of Add can be any kind of value in our language: int, string, or rational.

The interesting change to the SML code is in the Add case of eval. We now have to consider 9 (i.e., 3 ∗ 3)
subcases, one for each combination of values produced by evaluating the subexpressions. To make this
explicit and more like the object-oriented version considered below, we can move these cases out into a
helper function add_values as follows:

fun eval e =

case e of

...

| Add(e1,e2) => add_values (eval e1, eval e2)

...

fun add_values (v1,v2) =

case (v1,v2) of

(Int i, Int j) => Int (i+j)

| (Int i, String s) => String(Int.toString i ^ s)

| (Int i, Rational(j,k)) => Rational(i*k+j,k)

| (String s, Int i) => String(s ^ Int.toString i) (* not commutative *)

| (String s1, String s2) => String(s1 ^ s2)

| (String s, Rational(i,j)) => String(s ^ Int.toString i ^ "/" ^ Int.toString j)

| (Rational _, Int _) => add_values(v2,v1) (* commutative: avoid duplication *)

| (Rational(i,j), String s) => String(Int.toString i ^ "/" ^ Int.toString j ^ s)

| (Rational(a,b), Rational(c,d)) => Rational(a*d+b*c,b*d)

| _ => raise BadResult "non-values passed to add_values"

Notice add_values is defining all 9 entries in this 2-D grid for how to add values in our language — a
different kind of matrix than we considered previously because the rows and columns are variants.
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Int String Rational
Int

String
Rational

While the number of cases may be large, that is inherent to the problem. If many cases work the same
way, we can use wildcard patterns and/or helper functions to avoid redundancy. One common source of
redundancy is commutativity, i.e., the order of values not mattering. In the example above, there is only one
such case: adding a rational and an int is the same as adding an int and a rational. Notice how we exploit
this redundancy by having one case use the other with the call add_values(v2,v1).

Binary Methods in OOP: Double Dispatch

We now turn to supporting the same enhancement of strings, rationals, and enhanced evaluation rules for
Add in an OOP style. Because Ruby has built-in classes called String and Rational, we will extend our
code with classes named MyString and MyRational, but obviously that is not the important point. The
first step is to add these classes and have them implement all the existing methods, just like we did when we
added Mult previously. Then that “just” leaves revising the eval method of the Add class, which previously
assumed the recursive results would be instances of Int and therefore have a getter method i:

def eval

Int.new(e1.eval.i + e2.eval.i) # error if e1.eval or e2.eval have no i method

end

Now we could instead replace this method body with code like our add_values helper function in ML, but
helper functions like this are not OOP style. Instead, we expect add_values to be a method in the classes
that represent values in our language: An Int, MyRational, or MyString should “know how to add itself to
another value.” So in Add, we write:

def eval

e1.eval.add_values e2.eval

end

This is a good start and now obligates us to have add_values methods in the classes Int, MyRational,
and MyString. By putting add_values methods in the Int, MyString, and MyRational classes, we nicely
divide our work into three pieces using dynamic dispatch depending on the class of the object that e1.eval
returns, i.e., the receiver of the add_values call in the eval method in Add. But then each of these three
needs to handle three of the nine cases, based on the class of the second argument. One approach would be
to, in these methods, abandon object-oriented style (!) and use run-time tests of the classes to include the
three cases. The Ruby code would look like this:

class Int

...

def add_values v

if v.is_a? Int

...

elsif v.is_a? MyRational

...

else
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...

end

end

end

class MyRational

...

def add_values v

if v.is_a? Int

...

elsif v.is_a? MyRational

...

else

...

end

end

end

class MyString

...

def add_values v

if v.is_a? Int

...

elsif v.is_a? MyRational

...

else

...

end

end

end

While this approach works, it is really not object-oriented programming. Rather, it is a mix of object-oriented
decomposition (dynamic dispatch on the first argument) and functional decomposition (using is_a? to figure
out the cases in each method). There is not necessarily anything wrong with that — it is probably simpler
to understand than what we are about to demonstrate — but it does give up the extensibility advantages of
OOP and really is not “full” OOP.

Here is how to think about a “full” OOP approach: The problem inside our three add_values methods is
that we need to “know” the class of the argument v. In OOP, the strategy is to replace “needing to know
the class” with calling a method on v instead. So we should “tell v” to do the addition, passing self. And
we can “tell v” what class self is because the add_values methods know that: In Int, self is an Int for
example. And the way we “tell v the class” is to call different methods on v for each kind of argument.

This technique is called double dispatch. Here is the code for our example, followed by additional explanation:

class Int

... # other methods not related to add_values

def add_values v # first dispatch

v.addInt self

end

def addInt v # second dispatch: v is Int

Int.new(v.i + i)

end

def addString v # second dispatch: v is MyString

MyString.new(v.s + i.to_s)
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end

def addRational v # second dispatch: v is MyRational

MyRational.new(v.i+v.j*i,v.j)

end

end

class MyString

... # other methods not related to add_values

def add_values v # first dispatch

v.addString self

end

def addInt v # second dispatch: v is Int

MyString.new(v.i.to_s + s)

end

def addString v # second dispatch: v is MyString

MyString.new(v.s + s)

end

def addRational v # second dispatch: v is MyRational

MyString.new(v.i.to_s + "/" + v.j.to_s + s)

end

end

class MyRational

... # other methods not related to add_values

def add_values v # first dispatch

v.addRational self

end

def addInt v # second dispatch

v.addRational self # reuse computation of commutative operation

end

def addString v # second dispatch: v is MyString

MyString.new(v.s + i.to_s + "/" + j.to_s)

end

def addRational v # second dispatch: v is MyRational

a,b,c,d = i,j,v.i,v.j

MyRational.new(a*d+b*c,b*d)

end

end

Before understanding how all the method calls work, notice that we do now have our 9 cases for addition in
9 different methods:

• The addInt method in Int is for when the left operand to addition is an Int (in v) and the right
operation is an Int (in self).

• The addString method in Int is for when the left operand to addition is a MyString (in v) and the
right operation is an Int (in self).

• The addRational method in Int is for when the left operand to addition is a MyRational (in v) and
the right operation is an Int (in self).

• The addInt method in MyString is for when the left operand to addition is an Int (in v) and the right
operation is a MyString (in self).

• The addString method in MyString is for when the left operand to addition is a MyString (in v) and
the right operation is a MyString (in self).
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• The addRational method in MyString is for when the left operand to addition is a MyRational (in
v) and the right operation is a MyString (in self).

• The addInt method in MyRational is for when the left operand to addition is an Int (in v) and the
right operation is a MyRational (in self).

• The addString method in MyRational is for when the left operand to addition is a MyString (in v)
and the right operation is a MyRational (in self).

• The addRational method in MyRational is for when the left operand to addition is a MyRational (in
v) and the right operation is a MyRational (in self).

As we might expect in OOP, our 9 cases are “spread out” compared to in the ML code. Now we need to
understand how dynamic dispatch is picking the correct code in all 9 cases. Starting with the eval method in
Add, we have e1.eval.add_values e2.eval. There are 3 add_values methods and dynamic dispatch will
pick one based on the class of the value returned by e1.eval. This the “first dispatch.” Suppose e1.eval is
an Int. Then the next call will be v.addInt self where self is e1.eval and v is e2.eval. Thanks again
to dynamic dispatch, the method looked up for addInt will be the right case of the 9. This is the “second
dispatch.” All the other cases work analogously.

Understanding double dispatch can be a mind-bending exercise that re-enforces how dynamic dispatch works,
the key thing that separates OOP from other programming. It is not necessarily intuitive, but it what one
must do in Ruby/Java to support binary operations like our addition in an OOP style.

Notes:

• OOP languages with multimethods, discussed next, do not require the manual double dispatch we have
seen here.

• Statically typed languages like Java do not get in the way of the double-dispatch idiom. In fact, needing
to declare method argument and return types as well as indicating in the superclass the methods that
all subclasses implement can make it easier to understand what is going on. A full Java implementation
of our example is posted with the course materials. (It is common in Java to reuse method names for
different methods that take arguments of different types. Hence we could use add instead of addInt,
addString, and addRational, but this can be more confusing than helpful when first learning double
dispatch.)

Multimethods

It is not true that all OOP languages require the cumbersome double-dispatch pattern to implement bi-
nary operations in a full OOP style. Languages with multimethods, also known as multiple dispatch,
provide more intuitive solutions. In such languages, the classes Int, MyString, and MyRational could
each define three methods all named add_values (so there would be nine total methods in the program
named add_values). Each add_values method would indicate the class it expects for its argument. Then
e1.eval.add_values e2.eval would pick the right one of the 9 by, at run-time, considering the class of
the result of e1.eval and the class of the result of e2.eval.

This is a powerful and different semantics than we have studied for OOP. In our study of Ruby (and
Java/C#/C++ work the same way), the method-lookup rules involve the run-time class of the receiver (the
object whose method we are calling), not the run-time class of the argument(s). Multiple dispatch is “even
more dynamic dispatch” by considering the class of multiple objects and using all that information to choose
what method to call.
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Ruby does not support multimethods because Ruby is committed to having only one method with a particular
name in each class. Any object can be passed to this one method. So there is no way to have 3 add_values

methods in the same class and no way to indicate which method should be used based on the argument.

Java and C++ also do not have multimethods. In these languages you can have multiple methods in a class
with the same name and the method-call semantics does use the types of the arguments to choose what
method to call. But it uses the types of the arguments, which are determined at compile-time and not the
run-time class of the result of evaluating the arguments. This semantics is called static overloading. It is
considered useful and convenient, but it is not multimethods and does not avoid needing double dispatch in
our example.

C# has the same static overloading as Java and C++, but as of version 4.0 of the language one can achieve
the effect of multimethods by using the type “dynamic” in the right places. We do not discuss the details
here, but it is a nice example of combining language features to achieve a useful end.

Many OOP languages have had multimethods for many years — they are not a new idea. Perhaps the most
well-known modern language with multimethods is Clojure.

Multiple Inheritance

We have seen that the essence of object-oriented programming is inheritance, overriding, and dynamic
dispatch. All our examples have been classes with 1 (immediate) superclass. But if inheritance is so useful
and important, why not allow ways to use more code defined in other places such as another class. We now
begin discussing 3 related but distinct ideas:

• Multiple inheritance: Languages with multiple inheritance let one class extend multiple other classes.
It is the most powerful option, but there are some semantic problems that arise that the other ideas
avoid. Java and Ruby do not have multiple inheritance; C++ does.

• Mixins: Ruby allows a class to have one immediate superclass but any number of mixins. Because a
mixin is “just a pile of methods,” many of the semantic problems go away. Mixins do not help with
all situations where you want multiple inheritance, but they have some excellent uses. In particular,
elegant uses of mixins typically involve mixin methods calling methods that they assume are defined
in all classes that include the mixin. Ruby’s standard libraries make good use of this technique and
your code can too.

• Java/C#-style interfaces: Java/C# classes have one immediate superclass but can “implement” any
number of interfaces. Because interfaces do not provide behavior — they only require that certain
methods exist — most of the semantic problems go away. Interfaces are fundamentally about type-
checking, which we will study more later in this unit, so there very little reason for them in a language
like Ruby. C++ does not have interfaces because inheriting a class with all “abstract” methods (or
“pure virtual” methods in C++-speak) accomplishes the same thing as described more below.

To understand why multiple inheritance is potentially useful, consider two classic examples:

• Consider a Point2D class with subclasses Point3D (adding a z-dimension) and ColorPoint (adding
a color attribute). To create a ColorPoint3D class, it would seem natural to have two immediate
superclasses, Point3D and ColorPoint so we inherit from both.

• Consider a Person class with subclasses Artist and Cowboy. To create an ArtistCowboy (someone
who is both), it would seem natural again to have two immediate superclasses. Note, however, that
both the Artist class and the Cowboy class have a method “draw” that have very different behaviors
(creating a picture versus producing a gun).
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Without multiple inheritance, you end up copying code in these examples. For example, ColorPoint3D

can subclass Point3D and copy code from ColorPoint or it can subclass ColorPoint and copy code from
Point3D.

If we have multiple inheritance, we have to decide what it means. Naively we might say that the new class has
all the methods of all the superclasses (and fields too in languages where fields are part of class definitions).
However, if two of the immediate superclasses have the same fields or methods, what does that mean? Does
it matter if the fields or methods are inherited from the same common ancestor? Let us explain these issues
in more detail before returning to our examples.

With single inheritance, the class hierarchy — all the classes in a program and what extends what — forms
a tree, where A extends B means A is a child of B in the tree. With multiple inheritance, the class hierarchy
may not be a tree. Hence it can have “diamonds” — four classes where one is a (not necessarily immediate)
subclass of two others that have a common (not necessarily immediate) superclass. By “immediate” we
mean directly extends (child-parent relationship) whereas we could say “transitive” for the more general
ancestor-descendant relationship.

With multiple superclasses, we may have conflicts for the fields / methods inherited from the different classes.
The draw method for ArtistCowboy objects is an obvious example where we would like somehow to have
both methods in the subclass, or potentially to override one or both of them. At the very least we need
expressions using super to indicate which superclass is intended. But this is not necessarily the only conflict.
Suppose the Person class has a pocket field that artists and cowboys use for different things. Then perhaps
an ArtistCowboy should have two pockets, even though the creation of the notion of pocket was in the
common ancestor Person.

But if you look at our ColorPoint3D example, you would reach the opposite conclusion. Here both Point3D

and ColorPoint inherit the notion of x and y from a common ancestor, but we certainly do not want a
ColorPoint3D to have two x methods or two @x fields.

These issues are some of the reasons language with multiple inheritance (most well-known is C++) need fairly
complicated rules for how subclassing, method lookup, and field access work. For example, C++ has (at
least) two different forms of creating a subclass. One always makes copies of all fields from all superclasses.
The other makes only one copy of fields that were initially declared by the same common ancestor. (This
solution would not work well in Ruby because instance variables are not part of class definitions.)

Mixins

Ruby has mixins, which are somewhere between multiple inheritance (see above) and interfaces (see below).
They provide actual code to classes that include them, but they are not classes themselves, so you cannot
create instances of them. Ruby did not invent mixins. Its standard-library makes good use of them, though.
A near-synonym for mixins is traits, but we will stick with what Ruby calls mixins.

To define a Ruby mixin, we use the keyword module instead of class. (Modules do a bit more than just
serve as mixins, hence the strange word choice.) For example, here is a mixin for adding color methods to a
class:

module Color

attr_accessor :color

def darken

self.color = "dark " + self.color

end

end

13



This mixin defines three methods, color, color=, and darken. A class definition can include these methods
by using the include keyword and the name of the mixin. For example:

class ColorPt < Pt

include Color

end

This defines a subclass of Pt that also has the three methods defined by Color. Such classes can have other
methods defined/overridden too; here we just chose not to add anything additional. This is not necessarily
good style for a couple reasons. First, our initialize (inherited from Pt) does not create the @color field,
so we are relying on clients to call color= before they call color or they will get nil back. So overriding
initialize is probably a good idea. Second, mixins that use instance variables are stylistically questionable.
As you might expect in Ruby, the instance variables they use will be part of the object the mixin is included
in. So if there is a name conflict with some intended-to-be separate instance variable defined by the class
(or another mixin), the two separate pieces of code will mutate the same data. After all, mixins are “very
simple” — they just define a collection of methods that can be included in a class.

Now that we have mixins, we also have to reconsider our method lookup rules. We have to choose something
and this is what Ruby chooses: If obj is an instance of class C and we send message m to obj,

• First look in the class C for a definition of m.

• Next look in mixins included in C. Later includes shadow earlier ones.

• Next look in C’s superclass.

• Next look in C’s superclass’ mixins.

• Next look in C’s super-superclass.

• Etc.

Many of the elegant uses of mixins do the following strange-sounding thing: They define methods that call
other methods on self that are not defined by the mixin. Instead the mixin assumes that all classes that
include the mixin define this method. For example, consider this mixin that lets us “double” instances of
any class that has + defined:

module Doubler

def double

self + self # uses self’s + message, not defined in Doubler

end

end

If we include Doubler in some class C and call double on an instance of the class, we will call the + method
on the instance, getting an error if it is not defined. But if + is defined, everything works out. So now we
can easily get the convenience of doubling just by defining + and including the Doubler mixin. For example:

class AnotherPt

attr_accessor :x, :y

include Doubler

def + other # add two points

ans = AnotherPt.new

ans.x = self.x + other.x
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ans.y = self.y + other.y

ans

end

end

Now instances of AnotherPt have double methods that do what we want. We could even add double to
classes that already exist:

class String

include Doubler

end

Of course, this example is a little silly since the double method is so simple that copying it over and over
again would not be so burdensome.

The same idea is used a lot in Ruby with two mixins named Enumerable and Comparable. What Comparable
does is provide methods =, !=, >, >=, <, and <=, all of which assume the class defines <=>. What <=> needs
to do is return a negative number if its left argument is less than its right, 0 if they are equal, and a positive
number if the left argument is greater than the right. So now a class does not have to define all these
comparisons — it just defines <=> and includes Comparable. Consider this example for comparing names:

class Name

attr_accessor :first, :middle, :last

include Comparable

def initialize(first,last,middle="")

@first = first

@last = last

@middle = middle

end

def <=> other

l = @last <=> other.last # <=> defined on strings

return l if l != 0

f = @first <=> other.first

return f if f != 0

@middle <=> other.middle

end

end

Defining methods in Comparable is easy, but we certainly would not want to repeat the work for every class
that wants comparisons. For example, the > method is just:

def > other

(self <=> other) > 0

end

The Enumerable module is where many of the useful block-taking methods that iterate over some data
structure are defined. Examples are any?, map, count, and inject. They are all written assuming the class
has the method each defined. So a class can define each, include the Enumerable mixin, and have all these
convenient methods. So the Array class for example can just define each and include Enumerable. Here is
another example for a range class we might define:1

1We wouldn’t actually define this because Ruby already has very powerful range classes.
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class MyRange

include Enumerable

def initialize(low,high)

@low = low

@high = high

end

def each

i=@low

while i <= @high

yield i

i=i+1

end

end

end

Now we can write code like MyRange.new(4,8).inject {|x,y| x+y} or MyRange.new(5,12).count {|i| i.odd?}.
Note that the map method in Enumerable always returns an instance of Array. After all, it does not “know
how” to produce an instance of any class, but it does know how to produce an array containing one element
for everything produced by each. We could define it in the Enumerable mixin like this:

def map

arr = []

each {|x| arr.push x }

arr

end

Mixins are not as powerful as multiple inheritance because we have to decide upfront what to make a class
and what to make a mixin. Given Artist and Cowboy classes, we still have no natural way to make an
ArtistCowboy. And it is unclear which of Artist or Cowboy or both we might want to define in terms of a
mixin.

Java/C#-Style Interfaces

In Java or C#, a class can have only one immediate superclass but it can implement any number of interfaces.
An interface is just a list of methods and each method’s argument types and return type. A class type-
checks only if it actually provides (directly or via inheritance) all the methods of all the interfaces it claims
to implement. An interface is a type, so if a class C implements interface I, then we can pass an instance
of C to a method expecting an argument of type I, for example. Interfaces are closer to the idea of “duck
typing” than just using classes as types (in Java and C# every class is also a type), but a class has some
interface type only if the class definition explicitly says it implements the interface. We discuss more about
OOP type-checking later in this unit.

Because interfaces do not actually define methods — they only name them and give them types — none of
the problems discussed above about multiple inheritance arise. If two interfaces have a method-name conflict,
it does not matter — a class can still implement them both. If two interfaces disagree on a method’s type,
then no class can possibly implement them both but the type-checker will catch that. Because interfaces do
not define methods, they cannot be used like mixins.

In a dynamically typed language, there is really little reason to have interfaces.2 We can already pass any

2Probably the only use would be to change the meaning of Ruby’s is a? to incorporate interfaces, but we can more directly
just use reflection to find out an object’s methods.
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object to any method and call any method on any object. It is up to us to keep track “in our head”
(preferably in comments as necessary) what objects can respond to what messages. The essence of dynamic
typing is not writing down this stuff.

Bottom line: Implementing interfaces does not inherit code; it is purely related to type-checking in statically
typed languages like Java and C#. It makes the type systems in these languages more flexible. So Ruby
does not need interfaces.

Abstract Methods

Often a class definition has methods that call other methods that are not actually defined in the class. It
would be an error to create instances of such a class and use the methods such that “method missing” errors
occur. So why define such a class? Because the entire point of the class is to be subclassed and have different
subclasses define the missing methods in different ways, relying on dynamic dispatch for the code in the
superclass to call the code in the subclass. This much works just fine in Ruby — you can have comments
indicating that certain classes are there only for the purpose of subclassing.

The situation is more interesting in statically typed languages. In these languages, the purpose of type-
checking is to prevent “method missing” errors, so when using this technique we need to indicate that
instances of the superclass must not be created. In Java/C# such classes are called “abstract classes.” We
also need to give the type of any methods that (non-abstract) subclasses must provide. These are “abstract
methods.” Thanks to subtyping in these languages, we can have expressions with the type of the superclass
and know that at run-time the object will actually be one of the subclasses. Furthermore, type-checking
ensures the object’s class has implemented all the abstract methods, so it is safe to call these methods. In
C++, abstract methods are called “pure virtual methods” and serve much the same purpose.

There is an interesting parallel between abstract methods and higher-order functions. In both cases, the
language supports a programming pattern where some code is passed other code in a flexible and reusable way.
In OOP, different subclasses can implement an abstract method in different ways and code in the superclass,
via dynamic dispatch, can then uses these different implementations. With higher-order functions, if a
function takes another function as an argument, different callers can provide different implementations that
are then used in the function body.

Languages with abstract methods and multiple inheritance (e.g., C++) do not need interfaces. Instead we
can just use classes that have nothing but abstract (pure virtual) methods in them like they are interfaces
and have classes implementing these “interfaces” just subclass the classes. This subclassing is not inheriting
any code exactly because abstract methods do not define methods. With multiple inheritance, we are not
“wasting” our one superclass with this pattern.

Introduction to Subtyping

We previously studied static types for functional programs, in particular ML’s type system. ML uses its
type system to prevent errors like treating a number as a function. A key source of expressiveness in ML’s
type system (not rejecting too many programs that do nothing wrong and programmers are likely to write)
is parametric polymorphism, also known as generics.

So we should also study static types for object-oriented programs, such as those found in Java. If everything
is an object (which is less true in Java than in Ruby), then the main thing we would want our type system
to prevent is “method missing” errors, i.e., sending a message to an object that has no method for that
message. If objects have fields accessible from outside the object (e.g., in Java), then we also want to prevent
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“field missing” errors. There are other possible errors as well, like calling a method with the wrong number
of arguments.

While languages like Java and C# have generics these days, the source of type-system expressiveness most
fundamental to object-oriented style is subtype polymorphism, also known as subtyping. ML does not have
subtyping, though this decision is really one of language design (it would complicate type inference, for
example).

It would be natural to study subtyping using Java since it is a well-known object-oriented language with
a type system that has subtyping. But it is also fairly complicated, using classes and interfaces for types
that describe objects with methods, overriding, static overloading, etc. While these features have pluses
and minuses, they can complicate the fundamental ideas that underlie how subtyping should work in any
language.

So while we will briefly discuss subtyping in OOP, we will mostly use a small language with records (like in
ML, things with named fields holding contents — basically objects with public fields, no methods, and no
class names) and functions (like in ML or Racket). This will let us see how subtyping should — and should
not — work.

This approach has the disadvantage that we cannot use any of the language we have studied: ML does not
have subtyping and record fields are immutable, Racket and Ruby are dynamically typed, and Java is too
complicated for our starting point. So we are going to make up a language with just records, functions,
variables, numbers, strings, etc. and explain the meaning of expressions and types as we go.

A Made-Up Language of Records

To study the basic ideas behind subtyping, we will use records with mutable fields, as well as functions and
other expressions. Our syntax will be a mix of ML and Java that keeps examples short and, hopefully, clear.
For records, we will have expressions for making records, getting a field, and setting a field as follows:

• In the expression {f1=e1, f2=e2, ..., fn=en}, each fi is a field name and each ei is an ex-
pression. The semantics is to evaluate each ei to a value vi and the result is the record value
{f1=v1, f2=v2, ..., fn=vn}. So a record value is just a collection of fields, where each field has a
name and a contents.

• For the expression e.f, we evaluate e to a value v. If v is a record with an f field, then the result is
the contents of the f field. Our type system will ensure v has an f field.

• For the expression e1.f = e2, we evaluate e1 and e2 to values v1 and v2. If v1 is a record with an
f field, then we update the f field to have v2 for its contents. Our type system will ensure v1 has an
f field. Like in Java, we will choose to have the result of e1.f = e2 be v2, though usually we do not
use the result of a field-update.

Now we need a type system, with a form of types for records and typing rules for each of our expressions.
Like in ML, let’s write record types as {f1:t1, f2:t2, ..., fn:tn}. For example, {x : real, y : real}

would describe records with two fields named x and y that hold contents of type real. And
{foo: {x : real, y : real}, bar : string, baz : string} would describe a record with three fields
where the foo field holds a (nested) record of type {x : real, y : real}. We then type-check expressions
as follows:

• If e1 has type t1, e2 has type t2, ..., en has type tn, then {f1=e1, f2=e2, ..., fn=en} has type
{f1:t1, f2:t2, ..., fn:tn}.
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• If e has a record type containing f : t, then e.f has type t (else e.f does not type-check).

• If e1 has a record type containing f : t and e2 has type t, then e1.f = e2 has type t (else e1.f = e2

does not type-check).

Assuming the “regular” typing rules for other expressions like variables, functions, arithmetic, and function
calls, an example like this will type-check as we would expect:

fun distToOrigin (p:{x:real,y:real}) =

Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}

val five : real = distToOrigin(pythag)

In particular, the function distToOrigin has type {x : real, y : real} -> real, where we write func-
tion types with the same syntax as in ML. The call distToOrigin(pythag) passes an argument of the right
type, so the call type-checks and the result of the call expression is the return type real.

This type system does what it is intended to do: No program that type-checks would, when evaluated, try
to look up a field in a record that does not have that field.

Wanting Subtyping

With our typing rules so far, this program would not type-check:

fun distToOrigin (p:{x:real,y:real}) =

Math.sqrt(p.x*p.x + p.y*p.y)

val c : {x:real,y:real,color:string} = {x=3.0, y=4.0, color="green"}

val five : real = distToOrigin(c)

In the call distToOrigin(c), the type of the argument is {x:real,y:real,color:string} and the type
the function expects is {x:real,y:real}, breaking the typing rule that functions must be called with the
type of argument they expect. Yet the program above is safe: running it would not lead to accessing a field
that does not exist.

A natural idea is to make our type system more lenient as follows: If some expression has a record type
{f1:t1, ..., fn:tn}, then let the expression also have a type where some of the fields are removed. Then
our example will type-check: Since the expression c has type {x:real,y:real,color:string}, it can also
have type {x:real,y:real}, which allows the call to type-check. Notice we could also use c as an argument
to a function of type {color:string}->int, for example.

Letting an expression that has one type also have another type that has less information is the idea of
subtyping. (It may seem backwards that the subtype has more information, but that is how it works. A
less-backwards way of thinking about it is that there are “fewer” values of the subtype than of the supertype
because values of the subtype have more obligations, e.g., having more fields.)

The Subtyping Relation

We will now add subtyping to our made-up language, in a way that will not require us to change any of our
existing typing rules. For example, we will leave the function-call rule the same, still requiring that the type
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of the actual argument equal the type of the function parameter in the function definition. To do this, we
will add two things to our type system:

• The idea of one type being a subtype of another: We will write t1 <: t2 to mean t1 is a subtype of
t2.

• One and only new typing rule: If e has type t1 and t1 <: t2, then e (also) has type t2.

So now we just need to give rules for t1 <: t2, i.e., when is one type a subtype of another. This approach
is good language engineering — we have separated the idea of subtyping into a single binary relation that
we can define separately from the rest of the type system.

A common misconception is that if we are defining our own language, then we can make the typing and
subtyping rules whatever we want. That is only true if we forget that our type system is allegedly preventing
something from happening when programs run. If our goal is (still) to prevent field-missing errors, then we
cannot add any subtyping rules that would cause us to stop meeting our goal. This is what people mean
when they say, “Subtyping is not a matter of opinion.”

For subtyping, the key guiding principle is substitutability : If we allow t1 <: t2, then any value of type t1

must be able to be used in every way a t2 can be. For records, that means t1 should have all the fields that
t2 has and with the same types.

Some Good Subtyping Rules

Without further ado, we can now give four subtyping rules that we can add to our language to accept more
programs without breaking the type system. The first two are specific to records and the next two, while
perhaps seeming unnecessary, do no harm and are common in any language with subtyping because they
combine well with other rules:

• “Width” subtyping: A supertype can have a subset of fields with the same types, i.e., a subtype can
have “extra” fields

• “Permutation” subtyping: A supertype can have the same set of fields with the same types in a different
order.

• Transitivity: If t1 <: t2 and t2 <: t3, then t1 <: t3.

• Reflexivity: Every type is a subtype of itself: t <: t.

Notice that width subtyping lets us forget fields, permutation subtyping lets us reorder fields (e.g., so we can
pass a {x:real,y:real} in place of a {y:real,x:real}) and transitivity with those rules lets us do both
(e.g., so we can pass a {x:real,foo:string,y:real} in place of a {y:real,x:real}).

Depth Subtyping: A Bad Idea With Mutation

Our subtyping rules so far let us drop fields or reorder them, but there is no way for a supertype to have a
field with a different type than in the subtype. For example, consider this example, which passes a “sphere”
to a function expecting a “circle.” Notice that circles and spheres have a center field that itself holds a
record.

fun circleY (c:{center:{x:real,y:real}, r:real}) =

c.center.y

20



val sphere:{center:{x:real,y:real,z:real}, r:real}) = {center={x=3.0,y=4.0,z=0.0}, r=1.0}

val _ = circleY(sphere)

The type of circleY is {center:{x:real,y:real}, r:real}->real and the type of sphere is
{center:{x:real,y:real,z:real}, r:real}, so the call circleY(sphere) can type-check only if

{center:{x:real,y:real,z:real}, r:real} <: {center:{x:real,y:real}, r:real}

This subtyping does not hold with our rules so far: We can drop the center field, drop the r field, or reorder
those fields, but we cannot “reach into a field type to do subtyping.”

Since we might like the program above to type-check since evaluating it does nothing wrong, perhaps we
should add another subtyping rule to handle this situation. The natural rule is “depth” subtyping for records:

• “Depth” subtyping: If ta <: tb, then {f1:t1,...,f:ta,...,fn:tn} <: {f1:t1,...,f:tb,...,fn:tn}.

This rule lets us use width subtyping on the field center to show

{center:{x:real,y:real,z:real}, r:real} <: {center:{x:real,y:real}, r:real}

so the program above now type-checks.

Unfortunately, this rule breaks our type system, allowing programs that we do not want to allow to type-
check! This may not be intuitive and programmers make this sort of mistake often — thinking depth
subtyping should be allowed. Here is an example:

fun setToOrigin (c:{center:{x:real,y:real}, r:real})=

c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real}) = {center={x=3.0,y=4.0,z=0.0}, r=1.0}

val _ = setToOrigin(sphere)

val _ = sphere.center.z

This program type-checks in much the same way: The call setToOrigin(sphere) has an argument of type
{center:{x:real,y:real,z:real}, r:real} and uses it as a {center:{x:real,y:real}, r:real}. But
what happens when we run this program? setToOrigin mutates its argument so the center field holds a
record with no z field! So the last line, sphere.center.z will not work: it tries to read a field that does not
exist.

The moral of the story is simple if often forgotten: In a language with records (or objects) with getters and
setters for fields, depth subtyping is unsound — you cannot have a different type for a field in the subtype
and the supertype.

Note, however, that if a field is not settable (i.e., it is immutable), then the depth subtyping rule is sound
and, like we saw with circleY, useful. So this is yet another example of how not having mutation makes
programming easier. In this case, it allows more subtyping, which lets us reuse code more.

Another way to look at the issue is that given the three features of (1) setting a field, (2) letting depth
subtyping change the type of a field, and (3) having a type system actually prevent field-missing errors, you
can have any two of the three.
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The Problem With Java/C# Array Subtyping

Now that we understand depth subtyping is unsound if record fields are mutable, we can question how Java
and C# treat subtyping for arrays. For the purpose of subtyping, arrays are very much like records, just
with field names that are numbers and all fields having the same type. (Since e1[e2] computes what index
to access and the type system does not restrict what index might be the result, we need all fields to have the
same type so that the type system knows the type of the result.) So it should very much surprise us that
this code type-checks in Java:

class Point { ... } // has fields double x, y

class ColorPoint extends Point { ... } // adds field String color

...

void m1(Point[] pt_arr) {

pt_arr[0] = new Point(3,4);

}

String m2(int x) {

ColorPoint[] cpt_arr = new ColorPoint[x];

for(int i=0; i < x; i++)

cpt_arr[i] = new ColorPoint(0,0,"green");

m1(cpt_arr);

return cpt_arr[0].color;

}

The call m1(cpt_arr) uses subtyping with ColorPoint[] <: Point[], which is essentially depth subtyping
even though array indices are mutable. As a result, it appears that cpt_arr[0].color will read the color

field of an object that does not have such a field.

What actually happens in Java and C# is the assignment pt_arr[0] = new Point(3,4); will raise an
exception if pt_arr is actually an array of ColorPoint. In Java, this is an ArrayStoreException. The
advantage of having the store raise an exception is that no other expressions, such as array reads or object-
field reads, need run-time checks. The invariant is that an object of type ColorPoint[] always holds objects
that have type ColorPoint or a subtype, not a supertype like Point. Since Java allows depth subtyping on
arrays, it cannot maintain this invariant statically. Instead, it has a run-time check on all array assignments,
using the “actual” type of array elements and the “actual” class of the value being assigned. So even though
in the type system pt_arr[0] and new Point(3,4) both have type Point, this assignment can fail at
run-time.

As usual, having run-time checks means the type system is preventing fewer errors, requiring more care
and testing, plus the run-time cost of performing these checks on array updates. So why were Java and
C# designed this way? It seemed important for flexibility before these languages had generics so that, for
example, if you wrote a method to sort an array of Point objects, you could use your method to sort an
array of ColorPoint objects. Allowing this makes the type system simpler and less “in your way” at the
expense of statically checking less. Better solutions would be to use generics in combination with subtyping
(see bounded polymorphism in the next lecture) or to have support for indicating that a method will not
update array elements, in which case depth subtyping is sound.

null in Java/C#

While we are on the subject of pointing out places where Java/C# choose dynamic checking over the
“natural” typing rules, the far more ubiquitous issue is how the constant null is handled. Since this value
has no fields or methods (in fact, unlike nil in Ruby, it is not even an object), its type should naturally
reflect that it cannot be used as the receiver for a method or for getting/setting a field. Instead, Java and
C# allow null to have any object type, as though it defines every method and has every field. From a static
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checking perspective, this is exactly backwards. As a result, the language definition has to indicate that
every field access and method call includes a run-time check for null, leading to the NullPointerException
errors that Java programmers regularly encounter.

So why were Java and C# designed this way? Because there are situations where it is very convenient to have
null, such as initializing a field of type Foo before you can create a Foo instance (e.g., if you are building
a cyclic list). But it is also very common to have fields and variables that should never hold null and you
would like to have help from the type-checker to maintain this invariant. Many proposals for incorporating
“cannot be null” types into programming languages have been made, but none have yet “caught on” for
Java or C#. In contrast, notice how ML uses option types for similar purposes: The types t option and t

are not the same type; you have to use NONE and SOME constructors to build a datatype where values might
or might not actually have a t value.

Function Subtyping

The rules for when one function type is a subtype of another function type are even less intuitive than the
issue of depth subtyping for records, but they are just as important for understanding how to safely override
methods in object-oriented languages (see below).

When we talk about function subtyping, we are talking about using a function of one type in place of a
function of another type. For example, if f takes a function g of type t1->t2, can we pass a function of type
t3->t4 instead? If t3->t4 is a subtype of t1->t2 then this is allowed because, as usual, we can pass the
function f an argument that is a subtype of the type expected. But this is not “function subtyping” on f

— it is “regular” subtyping on function arguments. The “function subtyping” is deciding that one function
type is a subtype of another.

To understand function subtyping, let’s use this example of a higher-order function, which computes the
distance between the two-dimensional point p and the result of calling f with p:

fun distMoved (f : {x:real,y:real}->{x:real,y:real},

p : {x:real,y:real}) =

let val p2 : {x:real,y:real} = f p

val dx : real = p2.x - p.x

val dy : real = p2.y - p.y

in Math.sqrt(dx*dx + dy*dy) end

The type of distMoved is

(({x:real,y:real}->{x:real,y:real}) * {x:real,y:real}) -> real

So a call to distMoved requiring no subtyping could look like this:

fun flip p = {x=~p.x, y=~p.y}

val d = distMoved(flip, {x=3.0, y=4.0})

The call above could also pass in a record with extra fields, such as {x=3.0,y=4.0,color="green"}, but this
is just ordinary width subtyping on the second argument to distMoved. Our interest here is deciding what
functions with types other than {x:real,y:real}->{x:real,y:real} can be passed for the first argument
to distMoved.

First, it is safe to pass in a function with a return type that “promises” more, i.e., returns a subtype of the
needed return type for the function {x:real,y:real}. For example, it is fine for this call to type-check:
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fun flipGreen p = {x=~p.x, y=~p.y, color="green"}

val d = distMoved(flipGreen, {x=3.0, y=4.0})

The type of flipGreen is

{x:real,y:real} -> {x:real,y:real,color:string}

This is safe because distMoved expects a {x:real,y:real}->{x:real,y:real} and flipGreen is substi-
tutable for values of such a type since the fact that flipGreen returns a record that also has a color field
is not a problem.

In general, the rule here is that if ta <: tb, then t -> ta <: t -> tb, i.e., the subtype can have a return
type that is a subtype of the supertype’s return type. To introduce a little bit of jargon, we say return types
are covariant for function subtyping meaning the subtyping for the return types works “the same way” (co)
as for the types overall.

Now let us consider passing in a function with a different argument type. It turns out argument types are
NOT covariant for function subtyping. Consider this example call to distMoved:

fun flipIfGreen p = if p.color = "green"

then {x=~p.x, y=~p.y}

else {x=p.x, y=p.y}

val d = distMoved(flipIfGreen, {x=3.0, y=4.0})

The type of flipIfGreen is

{x:real,y:real,color:string} -> {x:real,y:real}

This program should not type-check: If we run it, the expression p.color will have a “no such field” error
since the point passed to flipIfGreen does not have a color field. In short, ta <: tb, does NOT mean
ta -> t <: tb -> t. This would amount to using a function that “needs more of its argument” in place
of a function that “needs less of its argument.” This breaks the type system since the typing rules will not
require the “more stuff” to be provided.

But it turns out it works just fine to use a function that “needs less of its argument” in place of a function
that “needs more of its argument.” Consider this example use of distMoved:

fun flipX_Y0 p = {x=~p.x, y=0.0}

val d = distMoved(flipX_Y0, {x=3.0, y=4.0})

The type of flipX_Y0 is

{x:real} -> {x:real,y:real}

since the only field the argument to flipX_Y0 needs is x. And the call to distMoved causes no problem:
distMoved will always call its f argument with a record that has an x field and a y field, which is more than
flipX_Y0 needs.

In general, the treatment of argument types for function subtyping is “backwards” as follows: If tb <: ta,
then ta -> t <: tb -> t. The technical jargon for “backwards” is contravariance, meaning the subtyping
for argument types is the reverse (contra) of the subtyping for the types overall.

As a final example, function subtyping can allow contravariance of arguments and covariance of results:
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fun flipXMakeGreen p = {x=~p.x, y=0.0, color="green"}

val d = distMoved(flipXMakeGreen, {x=3.0, y=4.0})

Here flipXMakeGreen has type

{x:real} -> {x:real,y:real,color:string}

This is a subtype of

{x:real,y:real} -> {x:real,y:real}

because {x:real,y:real} <: {x:real} (contravariance on arguments) and
{x:real,y:real,color:string} <: {x:real,y:real} (covariance on results).

The general rule for function subtyping is: If t3 <: t1 and t2 <: t4, then t1->t2 <: t3->t4. This rule,
combined with reflexivity (every type is a subtype of itself) lets us use contravariant arguments, covariant
results, or both.

Argument contravariance is the least intuitive concept in the course, but it is worth burning into your
memory so that you do not forget it. Many very smart people get confused because it is not about calls
to methods/functions. Rather it is about the methods/functions themselves. We do not need function
subtyping for passing non-function arguments to functions: we can just use other subtyping rules (e.g., those
for records). Function subtyping is needed for higher-order functions or for storing functions themselves in
records. And object types are related to having records with functions (methods) in them.

Subtyping for OOP

As promised, we can now apply our understanding of subtyping to OOP languages like Java or C#.

An object is basically a record holding fields (which we assume here are mutable) and methods. We assume
the “slots” for methods are immutable: If an object’s method m is implemented with some code, then there
is no way to mutate m to refer to different code. (An instance of a subclass could have different code for m,
but that is different than mutating a record field.)

With this perspective, sound subtyping for objects follows from sound subtyping for records and functions:

• A subtype can have extra fields.

• Because fields are mutable, a subtype cannot have a different type for a field.

• A subtype can have extra methods.

• Because methods are immutable, a subtype can have a subtype for a method, which means the method
in the subtype can have contravariant argument types and a covariant result type.

That said, object types in Java and C# do not look like record types and function types. For example, we
cannot write down a type that looks something like:

{fields : x:real, y:real, ...

methods: distToOrigin : () -> real, ...}
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Instead, we reuse class names as types where if there is a class Foo, then the type Foo includes in it all fields
and methods implied by the class definition (including superclasses). And, as discussed previously, we also
have interfaces, which are more like record types except they do not include fields and we use the name
of the interface as a type. Subtyping in Java and C# includes only the subtyping explicitly stated via the
subclass relationship and the interfaces that classes explicitly indicate they implement (including interfaces
implemented by superclasses).

All said, this approach is more restrictive than subtyping requires, but since it does not allow anything it
should not, it soundly prevents “field missing” and “method missing” errors. In particular:

• A subclass can add fields but not remove them

• A subclass can add methods but not remove them

• A subclass can override a method with a covariant return type

• A class can implement more methods than an interface requires or implement a required method with
a covariant return type

Classes and types are different things! Java and C# purposely confuse them as a matter of convenience, but
you should keep the concepts separate. A class defines an object’s behavior. Subclassing inherits behavior,
modifying behavior via extension and override. A type describes what fields an object has and what messages
it can respond to. Subtyping is a question of substitutability and what we want to flag as a type error. So
try to avoid saying things like, “overriding the method in the supertype” or, “using subtyping to pass an
argument of the superclass.” That said, this confusion is understandable in languages where every class
declaration introduces a class and a type with the same name.

Covariant self/this

As a final subtle detail and advanced point, Java’s this (i.e., Ruby’s self) is treated specially from a type-
checking perspective. When type-checking a class C, we know this will have type C or a subtype, so it is
sound to assume it has type C. In a subtype, e.g., in a method overriding a method in C, we can assume
this has the subtype. None of this causes any problems, and it is essential for OOP. For example, in class
B below, the method m can type-check only if this has type B, not just A.

class A {

int m(){ return 0; }

}

class B extends A {

int x;

int m(){ return x; }

}

But if you recall our manual encoding of objects in Racket, the encoding passed this as an extra explicit
argument to a method. That would suggest contravariant subtyping, meaning this in a subclass could not
have a subtype, which it needs to have in the example above.

It turns out this is special in the sense that while it is like an extra argument, it is an argument that is
covariant. How can this be? Because it is not a “normal” argument where callers can choose “anything” of
the correct type. Methods are always called with a this argument that is a subtype of the type the method
expects.
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This is the main reason why coding up dynamic dispatch manually works much less well in statically typed
languages, even if they have subtyping: You need special support in your type system for this.

Generics Versus Subtyping

We have now studied both subtype polymorphism, also known as subtyping, and parametric polymorphism,
also known as generic types, or just generics. So let’s compare and contrast the two approaches, demon-
strating what each is designed for.

What are generics good for?

There are many programming idioms that use generic types. We do not consider all of them here, but let’s
reconsider probably the two most common idioms that came up when studying higher-order functions.

First, there are functions that combine other functions such as compose:

val compose : (’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

Second, there are functions that operate over collections/containers where different collections/containers
can hold values of different types:

val length : ’a list -> int

val map : (’a -> ’b) -> ’a list -> ’b list

val swap : (’a * ’b) -> (’b * ’a)

In all these cases, the key point is that if we had to pick non-generic types for these functions, we would
end up with significantly less code reuse. For example, we would need one swap function for producing an
int * bool from a bool * int and another swap function for swapping the positions of an int * int.

Generic types are much more useful and precise than just saying that some argument can “be anything.”
For example, the type of swap indicates that the second component of the result has the same type as the
first component of the argument and the first component of the result has the same type as the second
component of the argument. In general, we reuse a type variable to indicate when multiple things can have
any type but must be the same type.

Generics in Java

Java has had subtype polymorphism since its creation in the 1990s and has had parametric polymorphism
since 2004. Using generics in Java can be more cumbersome without ML’s support for type inference and,
as a separate matter, closures, but generics are still useful for the same programming idioms. Here, for
example, is a generic Pair class, allowing the two fields to have any type:

class Pair<T1,T2> {

T1 x;

T2 y;

Pair(T1 _x, T2 _y){ x = _x; y = _y; }

Pair<T2,T1> swap() {

return new Pair<T2,T1>(y,x);

}

...

}
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Notice that, analogous to ML, “Pair” is not a type: something like Pair<String,Integer> is a type. The
swap method is, in object-oriented style, an instance method in Pair<T1,T2> that returns a Pair<T2,T1>.
We could also define a static method:

static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> p) {

return new Pair<T2,T1>(p.y,p.x);

}

For reasons of backwards-compatibility, the previous paragraph is not quite true: Java also has a type Pair

that “forgets” what the types of its fields are. Casting to and from this “raw” type leads to compile-time
warnings that you would be wise to heed: Ignoring them can lead to run-time errors in places you would not
expect.

Subtyping is a Bad Substitute for Generics

If a language does not have generics or a programmer is not comfortable with them, one often sees generic
code written in terms of subtyping instead. Doing so is like painting with a hammer instead of a paintbrush:
technically possible, but clearly the wrong tool. Consider this Java example:

class LamePair {

Object x;

Object y;

LamePair(Object _x, Object _y){ x=_x; y=_y; }

LamePair swap() { return new LamePair(y,x); }

...

}

String s = (String)(new LamePair("hi",4).y); // error caught only at run-time

The code in LamePair type-checks without problem: the fields x and y have type Object, which is a
supertype of every class and interface. The difficulties arise when clients use this class. Passing arguments
to the constructor works as expected with subtyping.3 But when we retrieve the contents of a field, getting
an Object is not very useful: we want the type of value we put back in.

Subtyping does not work that way: the type system knows only that the field holds an Object. So we have
to use a downcast, e.g., (String)e, which is a run-time check that the result of evaluating e is actually of
type String, or, in general, a subtype thereof. Such run-time checks have the usual dynamic-checking costs
in terms of performance, but, more importantly, in terms of the possibility of failure: this is not checked
statically. Indeed, in the example above, the downcast would fail: it is the x field that holds a String, not
the y field.

In general, when you use Object and downcasts, you are essentially taking a dynamic typing approach: any
object could be stored in an Object field, so it is up to programmers, without help from the type system, to
keep straight what kind of data is where.

What is Subtyping Good For?

We do not suggest that subtyping is not useful: It is great for allowing code to be reused with data that has
“extra information.” For example, geometry code that operates over points should work fine for colored-
points. It is certainly inconvenient in such situations that ML code like this simply does not type-check:

fun distToOrigin1 {x=x,y=y} =

3Java will automatically convert a 4 to an Integer object holding a 4.
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Math.sqrt (x*x + y*y)

(* does not type-check *)

(* val five = distToOrigin1 {x=3.0,y=4.0,color="red"} *)

A generally agreed upon example where subtyping works well is graphical user interfaces. Much of the code
for graphics libraries works fine for any sort of graphical element (“paint it on the screen,” “change the
background color,” “report if the mouse is clicked on it,” etc.) where different elements such as buttons,
slider bars, or text boxes can then be subtypes.

Generics are a Bad Substitute for Subtyping

In a language with generics instead of subtyping, you can code up your own code reuse with higher-order
functions, but it can be quite a bit of trouble for a simple idea. For example, distToOrigin2 below uses
getters passed in by the caller to access the x and y fields and then the next two functions have different
types but identical bodies, just to appease the type-checker.

fun distToOrigin2(getx,gety,v) =

let

val x = getx v

val y = gety v

in

Math.sqrt (x*x + y*y)

end

fun distToOriginPt (p : {x:real,y:real}) =

distToOrigin2(fn v => #x v,

fn v => #y v,

p)

fun distToOriginColorPt (p : {x:real,y:real,color:string}) =

distToOrigin2(fn v => #x v,

fn v => #y v,

p)

Nonetheless, without subtyping, it may sometimes be worth writing code like distToOrigin2 if you want it
to be more reusable.

Bounded Polymorphism

As Java and C# demonstrate, there is no reason why a statically typed programming language cannot have
generic types and subtyping. There are some complications from having both that we will not discuss (e.g.,
static overloading and subtyping are more difficult to define), but there are also benefits. In addition to
the obvious benefit of supporting separately the idioms that each feature supports well, we can combine the
ideas to get even more code reuse and expressiveness.

The key idea is to have bounded generic types, where instead of just saying “a subtype of T” or “for all types
’a,” we can say, “for all types ’a that are a subtype of T.” Like with generics, we can then use ’a multiple
times to indicate where two things must have the same type. Like with subtyping, we can treat ’a as a
subtype of T, accessing whatever fields and methods we know a T has.
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We will show an example using Java, which hopefully you can follow just by knowing that List<Foo> is the
syntax for the type of lists holding elements of type Foo.

Consider this Point class with a distance method:

class Pt {

double x, y;

double distance(Pt pt) { return Math.sqrt((x-pt.x)*(x-pt.x)+(y-pt.y)*(y-pt.y)); }

Pt(double _x, double _y) { x = _x; y = _y; }

}

Now consider this static method that takes a list of points pts, a point center, and a radius radius and
returns a new list of points containing all the input points within radius of center, i.e., within the circle
defined by center and radius:

static List<Pt> inCircle(List<Pt> pts, Pt center, double radius) {

List<Pt> result = new ArrayList<Pt>();

for(Pt pt : pts)

if(pt.distance(center) <= radius)

result.add(pt);

return result;

}

(Understanding the code in the method body is not important.)

This code works perfectly fine for a List<Pt>, but if ColorPt is a subtype of Pt (adding a color field and
associated methods), then we cannot call inCircle method above with a List<ColorPt> argument. Because
depth subtyping is unsound with mutable fields, List<ColorPt> is not a subtype of List<Pt>. Even if it
were, we would like to have a result type of List<ColorPt> when the argument type is List<ColorPt>.

For the code above, this is true: If the argument is a List<ColorPt>, then the result will be too, but we
want a way to express that in the type system. Java’s bounded polymorphism lets us describe this situation
(the syntax details are not important):

static <T extends Pt> List<T> inCircle(List<T> pts, Pt center, double radius) {

List<T> result = new ArrayList<T>();

for(T pt : pts)

if(pt.distance(center) <= radius)

result.add(pt);

return result;

}

This method is polymorphic in type T, but T must be a subtype of Pt. This subtyping is necessary so that
the method body can call the distance method on objects of type T. Wonderful!

Optional: Additional Java-Specific Bounded Polymorphism

While the second version of inCircle above is ideal, let us now consider a few variations. First, Java does
have enough dynamically checked casts that it is possible to use the first version with a List<ColorPt>

argument and cast the result from List<Pt> to List<ColorPt>. We have to use the “raw type” List to do
it, something like this where cps has type List<ColorPt>.
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List<ColorPt> out = (List<ColorPt>)(List) inCircle((List<Pt>)(List)cps, new Pt(0.0,0.0), 1.5);

In this case, these casts turn out to be okay: if inCircle is passed a List<ColorPt> the result will be a
List<ColorPt>. But casts like this are dangerous. Consider this variant of the method that has the same
type as the initial non-generic inCircle method:

static List<Pt> inCircle(List<Pt> pts, Pt center, double radius) {

List<Pt> result = new ArrayList<Pt>();

for(Pt pt : pts)

if(pt.distance(center) <= radius)

result.add(pt);

else

result.add(center);

return result;

}

The difference is that any points not within the circle are “replaced” in the output by center. Now if we
call inCircle with a List<ColorPt> cps where one of the points is not within the circle, then the result
is not a List<ColorPt> — it contains a Pt object! You might expect then that the cast of the result to
List<ColorPt> would fail, but Java does not work this way for backward-compatibility reasons: even this
cast succeeds. So now we have a value of type List<ColorPt> that is not a list of ColorPt objects. What
happens instead in Java is that a cast will fail later when we get a value from this alleged List<ColorPt>

and try to use it as ColorPt when it is in fact a Pt. The blame is clearly in the wrong place, which is why
using the warning-inducing casts in the first past is so problematic.

Last, we can discuss what type is best for the center argument in our bounded-polymorphic version. Above,
we chose Pt, but we could also choose T:

static <T extends Pt> List<T> inCircle(List<T> pts, T center, double radius) {

List<T> result = new ArrayList<T>();

for(T pt : pts)

if(pt.distance(center) <= radius)

result.add(pt);

return result;

}

It turns out this version allows fewer callers since the previous version allows, for example, a first argument
of type List<ColorPt> and a second argument of type Pt (and, therefore, via subtyping, also a ColorPt).
With the argument of type T, we require a ColorPt (or a subtype) when the first argument has type
List<ColorPt>. On the other hand, our version that sometimes adds center to the output requires the
argument to have type T:

static <T extends Pt> List<T> inCircle(List<T> pts, T center, double radius) {

List<T> result = new ArrayList<T>();

for(T pt : pts)

if(pt.distance(center) <= radius)

result.add(pt);

else

result.add(center);

return result;

}
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In this last version, if center has type Pt, then the call result.add(center) does not type-check since Pt

may not be a subtype of T (what we know is T is a subtype of Pt). The actual error message may be a bit
confusing: It reports there is no add method for List<T> that takes a Pt, which is true: the add method we
are trying to use takes a T.
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