
CSE341: Programming Languages

Interlude: Course Motivation

Dan Grossman

Winter 2013

Course Motivation

(Did you think I forgot? )

• Why learn the fundamental concepts that appear in all (most?)

languages?

• Why use languages quite different from C, C++, Java, Python?

• Why focus on functional programming?

• Why use ML, Racket, and Ruby in particular?

• Not: Language X is better than Language Y

[You won’t be tested on this stuff]

Winter 2013 2 CSE341: Programming Languages

Summary

• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software

– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades

– Ideas have been absorbed by the mainstream, but very slowly

– First-class functions and avoiding mutation increasingly essential

– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was

chosen for a reason and for how they complement each other

Winter 2013 3 CSE341: Programming Languages

What is the best kind of car?

What is the best kind of shoes?

Winter 2013 4 CSE341: Programming Languages

Cars / Shoes

Cars are used for rather different things:

– Winning a Formula 1 race

– Taking kids to soccer practice

– Off-roading

– Hauling a mattress

– Getting the wind in your hair

– Staying dry in the rain

Shoes:

– Playing basketball

– Going to a formal

– Going to the beach

Winter 2013 5 CSE341: Programming Languages

More on cars

• A good mechanic might have a specialty, but also understands

how “cars” (not a particular make/model) work

– The upholstery color isn’t essential (syntax)

• A good mechanical engineer really knows how cars work, how

to get the most out of them, and how to design better ones

– I don’t have a favorite kind of car or a favorite PL

• To learn how car pieces interact, it may make sense to start with

a classic design rather than the latest model

– A popular car may not be best

– May especially not be best for learning how cars work

Winter 2013 6 CSE341: Programming Languages

Why semantics and idioms

This course focuses as much as it can on semantics and idioms

• Correct reasoning about programs, interfaces, and compilers

requires a precise knowledge of semantics

– Not “I feel that conditional expressions might work like this”

– Not “I like curly braces more than parentheses”

– Much of software development is designing precise

interfaces; what a PL means is a really good example

• Idioms make you a better programmer

– Best to see in multiple settings, including where they shine

– See Java in a clearer light even if I never show you Java

Winter 2013 7 CSE341: Programming Languages

Hamlet

The play Hamlet:

– Is a beautiful work of art

– Teaches deep, eternal truths

– Is the source of some well-known sayings

– Makes you a better person

Continues to be studied centuries later even though:

– The syntax is really annoying to many (yet rhythmic)

– There are more popular movies with some of the same lessons

– Reading Hamlet will not get you a summer internship

Winter 2013 8 CSE341: Programming Languages

All cars are the same

• To make it easier to rent cars, it is great that they all have

steering wheels, brakes, windows, headlights, etc.

– Yet it is still uncomfortable to learn a new one

– Can you be a great driver if you only ever drive one car?

• And maybe PLs are more like cars, trucks, boats, and bikes

• So are all PLs really the same…

Winter 2013 9 CSE341: Programming Languages

Are all languages the same?

Yes:

– Any input-output behavior implementable in language X is

implementable in language Y [Church-Turing thesis]

– Java, ML, and a language with one loop and three infinitely-

large integers are “the same”

Yes:

– Same fundamentals reappear: variables, abstraction, one-of

types, recursive definitions, …

No:

– The human condition vs. different cultures

 (travel to learn more about home)

– The primitive/default in one language is awkward in another

– Beware “the Turing tarpit”

Winter 2013 10 CSE341: Programming Languages

Functional Programming

Why spend 60-80% of course using functional languages:

– Mutation is discouraged

– Higher-order functions are very convenient

– One-of types via constructs like datatypes

Because:

1. These features are invaluable for correct, elegant, efficient

software (great way to think about computation)

2. Functional languages have always been ahead of their time

3. Functional languages well-suited to where computing is going

Most of course is on (1), so a few minutes on (2) and (3) …

Winter 2013 11 CSE341: Programming Languages

Ahead of their time

All these were dismissed as “beautiful, worthless, slow things PL

professors make you learn”

• Garbage collection (Java didn’t exist in 1995, PL courses did)

• Generics (List<T> in Java, C#), much more like SML than C++

• XML for universal data representation (like Racket/Scheme/LISP/…)

• Higher-order functions (Ruby, Javascript, C#, …)

• Type inference (C#, Scala, …)

• Recursion (a big fight in 1960 about this – I’m told )

• …

Winter 2013 12 CSE341: Programming Languages

The future may resemble the past

Somehow nobody notices we are right… 20 years later

• “To conquer” versus “to assimilate”

• Societal progress takes time and muddles “taking credit”

• Maybe pattern-matching, currying, hygienic macros, etc. will be next

Winter 2013 13 CSE341: Programming Languages

Recent-ish Surge, Part 1

Other popular functional PLs (alphabetized, pardon omissions)

• Clojure http://clojure.org

• Erlang http://www.erlang.org

• F# http://tryfsharp.org

• Haskell http://www.haskell.org

• OCaml http://ocaml.org

• Scala http://www.scala-lang.org

Some “industry users” lists (surely more exist):

• http://www.haskell.org/haskellwiki/Haskell_in_industry

• http://ocaml.org/companies.html

• In general, see http://cufp.org

Winter 2013 14 CSE341: Programming Languages

Recent-ish Surge, Part 2

Popular adoption of concepts:

• C#, LINQ (closures, type inference, …)

• Java 8 (closures)

• MapReduce / Hadoop

– Avoiding side-effects essential for fault-tolerance here

• …

Winter 2013 15 CSE341: Programming Languages

Why a surge?

My best guesses:

• Concise, elegant, productive programming

• JavaScript, Python, Ruby helped break the Java/C/C++

hegemony

• Avoiding mutation is the easiest way to make concurrent and

parallel programming easier

– In general, to handle sharing in complex systems

• Sure, functional programming is still a small niche, but there is

so much software in the world today even niches have room

Winter 2013 16 CSE341: Programming Languages

The languages together

SML, Racket, and Ruby are a useful combination for us

 dynamically typed statically typed

 functional Racket SML

 object-oriented Ruby Java

ML: polymorphic types, pattern-matching, abstract types & modules

Racket: dynamic typing, “good” macros, minimalist syntax, eval

Ruby: classes but not types, very OOP, mixins

 [and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads

Prolog: unification and backtracking

 [and much more]

Winter 2013 17 CSE341: Programming Languages

But why not…

Instead of SML, could use similar languages easy to learn after:

– OCaml: yes indeed but would have to port all my materials 

• And a few small things (e.g., second-class constructors)

– F#: yes and very cool, but needs a .Net platform

• And a few more small things (e.g., second-class

constructors, less elegant signature-matching)

– Haskell: more popular, cooler types, but lazy semantics and

type classes from day 1

Admittedly, SML and its implementations are showing their age
(e.g., andalso and less tool support), but it still makes for a fine

foundation in statically typed, eager functional programming

Winter 2013 18 CSE341: Programming Languages

But why not…

Instead of Racket, could use similar languages easy to learn after:

– Scheme, Lisp, Clojure, …

Racket has a combination of:

– A modern feel and active evolution

– “Better” macros, modules, structs, contracts, …

– A large user base and community (not just for education)

– An IDE tailored to education

Could easily define our own language in the Racket system

– Would rather use a good and vetted design

Winter 2013 19 CSE341: Programming Languages

But why not…

Instead of Ruby, could use another language:

• Python, Perl, JavaScript are also dynamically typed, but are not

as “fully” OOP, which is what I want to focus on

– Python also does not have (full) closures

– JavaScript also does not have classes but is OOP

• Smalltalk serves my OOP needs

– But implementations merge language/environment

– Less modern syntax, user base, etc.

Winter 2013 20 CSE341: Programming Languages

Is this real programming?

• The way we use ML/Racket/Ruby can make them seem almost

“silly” precisely because lecture and homework focus on

interesting language constructs

• “Real” programming needs file I/O, string operations, floating-

point, graphics, project managers, testing frameworks, threads,

build systems, …

– Many elegant languages have all that and more

• Including Racket and Ruby

– If we used Java the same way, Java would seem “silly” too

Winter 2013 21 CSE341: Programming Languages

A note on reality

Reasonable questions when deciding to use/learn a language:

• What libraries are available for reuse?

• What tools are available?

• What can get me a job?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Our course by design does not deal with these questions

– You have the rest of your life for that

– And technology leaders affect the answers

Winter 2013 22 CSE341: Programming Languages

