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Interpreter or compiler 

So “rest of implementation” takes the abstract syntax tree (AST) 

and “runs the program” to produce a result 
 

Fundamentally, two approaches to implement a PL  B: 
 

• Write an interpreter in another language A 

– Better names: evaluator, executor 

– Take a program in B and produce an answer (in B) 
 

• Write a compiler in another language A to a third language C 

– Better name: translator 

– Translation must preserve meaning (equivalence) 
 

We call A the metalanguage 

– Crucial to keep A and B straight 
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Reality more complicated 

Evaluation (interpreter) and translation (compiler) are your options 

– But in modern practice have both and multiple layers 

 

A plausible example: 

– Java compiler to bytecode intermediate language 

– Have an interpreter for bytecode (itself in binary), but 

compile frequent functions to binary at run-time 

– The chip is itself an interpreter for binary 

• Well, except these days the x86 has a translator in 

hardware to more primitive micro-operations it then 

executes 

 

Racket uses a similar mix 
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Sermon 

Interpreter versus compiler versus combinations is about a 

particular language implementation, not the language definition 

 

So there is no such thing as a “compiled language” or an 

“interpreted language” 

– Programs cannot “see” how the implementation works 

 

Unfortunately, you often hear such phrases 

– “C is faster because it’s compiled and LISP is interpreted” 

– This is nonsense; politely correct people 

 

– (Admittedly, languages with “eval” must “ship with some 

implementation of the language” in each program) 
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Typical workflow 
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Skipping parsing 

• If implementing PL B in PL A, we can skip parsing  

– Have B programmers write ASTs directly in PL A 

– Not so bad with ML constructors or Racket structs 

– Embeds B programs as trees in A 
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Already did an example! 

• Let the metalanguage A = Racket 

• Let the language-implemented B = “Arithmetic Language” 

• Arithmetic programs written with calls to Racket constructors 

• The interpreter is eval-exp 
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(struct const (int) #:transparent) 

(struct negate (e) #:transparent) 

(struct add (e1 e2) #:transparent) 

(struct multiply (e1 e2) #:transparent) 

 
(define (eval-exp e) 

  (cond [(const? e) e] 

        [(negate? e) 

         (const (- (const-int  

                     (eval-exp (negate-e e)))))] 

        [(add? e) …] 

        [(multiply? e) …]… 

Racket data structure is 

Arithmetic Language 
program, which eval-

exp runs 



What we know 

• Define (abstract) syntax of language B with Racket structs 

– B called MUPL in homework 

• Write B programs directly in Racket via constructors 

• Implement interpreter for B as a (recursive) Racket function 

 

Now, a subtle-but-important distinction: 

– Interpreter can assume input is a “legal AST for B” 

• Okay to give wrong answer or inscrutable error otherwise 

– Interpreter must check that recursive results are the right 

kind of value  

• Give a good error message otherwise 
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Legal ASTs 

• “Trees the interpreter must handle” are a subset of all the trees 

Racket allows as a dynamically typed language 

 

 

 

 

• Can assume “right types” for struct fields 

– const holds a number 

– negate holds a legal AST 

– add and multiply hold 2 legal ASTs 
 

• Illegal ASTs can “crash the interpreter” – this is fine 
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(struct const (int) #:transparent) 

(struct negate (e) #:transparent) 

(struct add (e1 e2) #:transparent) 

(struct multiply (e1 e2) #:transparent) 

 

(multiply (add (const 3) "uh-oh") (const 4)) 

(negate -7) 



Interpreter results 

• Our interpreters return expressions, but not any expressions 

– Result should always be a value, a kind of expression that 

evaluates to itself 

– If not, the interpreter has a bug 
 

• So far, only values are from const, e.g., (const 17) 
 

• But a larger language has more values than just numbers 

– Booleans, strings, etc. 

– Pairs of values (definition of value recursive) 

– Closures 

– … 
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Example 

See code for language that adds booleans, number-comparison, 

and conditionals: 

 

 

 

 

What if the program is a legal AST, but evaluation of it tries to use 

the wrong kind of value? 

– For example, “add a boolean” 

– You should detect this and give an error message not in 

terms of the interpreter implementation 

– Means checking a recursive result whenever a particular 

kind of value is needed 

• No need to check if any kind of value is okay 
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(struct bool (b) #:transparent) 

(struct eq-num (e1 e2) #:transparent) 

(struct if-then-else (e1 e2 e3) #:transparent) 

 



Dealing with variables 

• Interpreters so far have been for languages without variables 

– No let-expressions, functions-with-arguments, etc. 

– Language in homework has all these things 

 

• This segment describes in English what to do 

– Up to you to translate this to code 

 

• Fortunately, what you have to implement is what we have been 

stressing since the very, very beginning of the course 
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Dealing with variables 

• An environment is a mapping from variables (Racket strings) to 

values (as defined by the language) 

– Only ever put pairs of strings and values in the environment 

 

• Evaluation takes place in an environment 

– Environment passed as argument to interpreter helper function 

– A variable expression looks up the variable in the environment 

– Most subexpressions use same environment as outer 

expression 

– A let-expression evaluates its body in a larger environment 
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The Set-up 

So now a recursive helper function has all the interesting stuff: 

 

 

 
 

– Recursive calls must “pass down” correct environment 

 

Then eval-exp just calls eval-under-env with same 

expression and the empty environment 

 

On homework, environments themselves are just Racket lists 

containing Racket pairs of a string (the MUPL variable name, e.g., 
"x") and a MUPL value (e.g., (int 17)) 
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(define (eval-under-env e env) 

   (cond … ; case for each kind of         

    ))     ; expression 



A grading detail 

• Stylistically eval-under-env would be a helper function one 

could define locally inside eval-exp 

 

• But do not do this on your homework 

– We have grading tests that call eval-under-env directly, 

so we need it at top-level 
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The best part 

• The most interesting and mind-bending part of the homework is 

that the language being implemented has first-class closures 

– With lexical scope of course 

 

• Fortunately, what you have to implement is what we have been 

stressing since we first learned about closures… 
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Higher-order functions 

The “magic”: How do we use the “right environment” for lexical 

scope when functions may return other functions, store them in 

data structures, etc.? 
 

Lack of magic: The interpreter uses a closure data structure (with 

two parts) to keep the environment it will need to use later 
 

 

 

Evaluate a function expression: 

– A function is not a value; a closure is a value 

• Evaluating a function returns a closure 

– Create a closure out of (a) the function and (b) the current 

environment when the function was evaluated 
 

Evaluate a function call: 

– … 
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(struct closure (env fun) #:transparent) 

 



Function calls 

• Use current environment to evaluate e1 to a closure 

– Error if result is a value that is not a closure 

• Use current environment to evaluate e2 to a value 

• Evaluate closure’s function’s body in the closure’s environment, 

extended to: 

– Map the function’s argument-name to the argument-value 

– And for recursion, map the function’s name to the whole closure 

 

This is the same semantics we learned a few weeks ago “coded up” 

 

Given a closure, the code part is only ever evaluated using the 

environment part (extended), not the environment at the call-site 
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(call e1 e2) 



Is that expensive? 

• Time to build a closure is tiny: a struct with two fields 
 

 

• Space to store closures might be large if environment is large 

– But environments are immutable, so natural and correct to 

have lots of sharing, e.g., of list tails (cf. lecture 3) 

– Still, end up keeping around bindings that are not needed 
 

 

• Alternative used in practice:  When creating a closure, store a 

possibly-smaller environment holding only the variables that are 

free variables in the function body 

– Free variables: Variables that occur, not counting shadowed 

uses of the same variable name 

– A function body would never need anything else from the 

environment 

Jan-Mar 2013 20 Dan Grossman, Programming Languages 



Free variables examples 

(lambda () (+ x y z))   ; {x, y, z} 

 

(lambda (x) (+ x y z))  ; {y, z} 

 

(lambda (x) (if x y z)) ; {y, z} 

 

(lambda (x) (let ([y 0]) (+ x y z))) ; {z} 

 

(lambda (x y z) (+ x y z)) ; {} 

 

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z} 
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Computing free variables 

• So does the interpreter have to analyze the code body every 

time it creates a closure? 

 

• No: Before evaluation begins, compute free variables of every 

function in program and store this information with the function 

 

• Compared to naïve store-entire-environment approach, building 

a closure now takes more time but less space 

– And time proportional to number of free variables 

– And various optimizations are possible 

 

• [Also use a much better data structure for looking up variables 

than a list] 
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Optional: compiling higher-order functions 

 

• If we are compiling to a language without closures (like 

assembly), cannot rely on there being a “current environment” 
 

• So compile functions by having the translation produce “regular” 

functions that all take an extra explicit argument called 

“environment” 
 

• And compiler replaces all uses of free variables with code that 

looks up the variable using the environment argument 

– Can make these fast operations with some tricks 

 

• Running program still creates closures and every function call 

passes the closure’s environment to the closure’s code 
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Recall… 

Our approach to language implementation: 
 

• Implementing language B in language A 

• Skipping parsing by writing language B programs directly in 

terms of language A constructors 

• An interpreter written in A recursively evaluates  

 

What we know about macros: 
 

• Extend the syntax of a language 

• Use of a macro expands into language syntax before the 

program is run, i.e., before calling the main interpreter function 
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Put it together 

With our set-up, we can use language A (i.e., Racket) functions that 

produce language B abstract syntax as language B “macros” 

 

– Language B programs can use the “macros” as though they 

are part of language B 
 

– No change to the interpreter or struct definitions 
 

– Just a programming idiom enabled by our set-up 

• Helps teach what macros are 
 

– See code for example “macro” definitions and “macro” uses 

• “macro expansion” happens before calling eval-exp 
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Hygiene issues 

• Earlier we had material on hygiene issues with macros 

– (Among other things), problems with shadowing variables 

when using local variables to avoid evaluating expressions 

more than once 

 

• The “macro” approach described here does not deal well with this 
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