
CSE341: Programming Languages

Lecture 17

Implementing Languages Including

Closures

Dan Grossman

Winter 2013

Typical workflow

Winter 2013 2 CSE341: Programming Languages

"(fn x => x + x) 4"

Parsing

Call

Function

+

Constant

4 x

x x

Var Var
Type checking?

Possible

errors /

warnings

Rest of implementation

Possible

errors /

warnings

concrete syntax (string)

abstract syntax (tree)

Interpreter or compiler

So “rest of implementation” takes the abstract syntax tree (AST)

and “runs the program” to produce a result

Fundamentally, two approaches to implement a PL B:

• Write an interpreter in another language A

– Better names: evaluator, executor

– Take a program in B and produce an answer (in B)

• Write a compiler in another language A to a third language C

– Better name: translator

– Translation must preserve meaning (equivalence)

We call A the metalanguage

– Crucial to keep A and B straight

Winter 2013 3 CSE341: Programming Languages

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options

– But in modern practice have both and multiple layers

A plausible example:

– Java compiler to bytecode intermediate language

– Have an interpreter for bytecode (itself in binary), but

compile frequent functions to binary at run-time

– The chip is itself an interpreter for binary

• Well, except these days the x86 has a translator in

hardware to more primitive micro-operations it then

executes

Racket uses a similar mix

Winter 2013 4 CSE341: Programming Languages

Sermon

Interpreter versus compiler versus combinations is about a

particular language implementation, not the language definition

So there is no such thing as a “compiled language” or an

“interpreted language”

– Programs cannot “see” how the implementation works

Unfortunately, you often hear such phrases

– “C is faster because it’s compiled and LISP is interpreted”

– This is nonsense; politely correct people

– (Admittedly, languages with “eval” must “ship with some

implementation of the language” in each program)

Winter 2013 5 CSE341: Programming Languages

Typical workflow

Winter 2013 6 CSE341: Programming Languages

"(fn x => x + x) 7"

Parsing

Type checking?

Possible

errors /

warnings

Interpreter or translater

Possible

errors /

warnings

concrete syntax (string)

abstract syntax (tree) Call

Function

+

Constant

4 x

x x

Var Var

Skipping parsing

• If implementing PL B in PL A, we can skip parsing

– Have B programmers write ASTs directly in PL A

– Not so bad with ML constructors or Racket structs

– Embeds B programs as trees in A

Winter 2013 7 CSE341: Programming Languages

; define B’s abstract syntax

(struct call …))

(struct function …)

(struct var …)

…

; example B program

(call (function (list “x”)

 (add (var “x”)

 (var “x”)))

 (const 4))

Call

Function

+

Constant

4 x

x x

Var Var

Already did an example!

• Let the metalanguage A = Racket

• Let the language-implemented B = “Arithmetic Language”

• Arithmetic programs written with calls to Racket constructors

• The interpreter is eval-exp

Winter 2013 8 CSE341: Programming Languages

(struct const (int) #:transparent)

(struct negate (e) #:transparent)

(struct add (e1 e2) #:transparent)

(struct multiply (e1 e2) #:transparent)

(define (eval-exp e)

 (cond [(const? e) e]

 [(negate? e)

 (const (- (const-int

 (eval-exp (negate-e e)))))]

 [(add? e) …]

 [(multiply? e) …]…

Racket data structure is

Arithmetic Language
program, which eval-

exp runs

What we know

• Define (abstract) syntax of language B with Racket structs

– B called MUPL in homework

• Write B programs directly in Racket via constructors

• Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:

– Interpreter can assume input is a “legal AST for B”

• Okay to give wrong answer or inscrutable error otherwise

– Interpreter must check that recursive results are the right

kind of value

• Give a good error message otherwise

Winter 2013 9 CSE341: Programming Languages

Legal ASTs

• “Trees the interpreter must handle” are a subset of all the trees

Racket allows as a dynamically typed language

• Can assume “right types” for struct fields

– const holds a number

– negate holds a legal AST

– add and multiply hold 2 legal ASTs

• Illegal ASTs can “crash the interpreter” – this is fine

Winter 2013 10 CSE341: Programming Languages

(struct const (int) #:transparent)

(struct negate (e) #:transparent)

(struct add (e1 e2) #:transparent)

(struct multiply (e1 e2) #:transparent)

(multiply (add (const 3) "uh-oh") (const 4))

(negate -7)

Interpreter results

• Our interpreters return expressions, but not any expressions

– Result should always be a value, a kind of expression that

evaluates to itself

– If not, the interpreter has a bug

• So far, only values are from const, e.g., (const 17)

• But a larger language has more values than just numbers

– Booleans, strings, etc.

– Pairs of values (definition of value recursive)

– Closures

– …

Winter 2013 11 CSE341: Programming Languages

Example

See code for language that adds booleans, number-comparison,

and conditionals:

What if the program is a legal AST, but evaluation of it tries to use

the wrong kind of value?

– For example, “add a boolean”

– You should detect this and give an error message not in

terms of the interpreter implementation

– Means checking a recursive result whenever a particular

kind of value is needed

• No need to check if any kind of value is okay

Winter 2013 12 CSE341: Programming Languages

(struct bool (b) #:transparent)

(struct eq-num (e1 e2) #:transparent)

(struct if-then-else (e1 e2 e3) #:transparent)

Dealing with variables

• Interpreters so far have been for languages without variables

– No let-expressions, functions-with-arguments, etc.

– Language in homework has all these things

• This segment describes in English what to do

– Up to you to translate this to code

• Fortunately, what you have to implement is what we have been

stressing since the very, very beginning of the course

Winter 2013 13 CSE341: Programming Languages

Dealing with variables

• An environment is a mapping from variables (Racket strings) to

values (as defined by the language)

– Only ever put pairs of strings and values in the environment

• Evaluation takes place in an environment

– Environment passed as argument to interpreter helper function

– A variable expression looks up the variable in the environment

– Most subexpressions use same environment as outer

expression

– A let-expression evaluates its body in a larger environment

Winter 2013 14 CSE341: Programming Languages

The Set-up

So now a recursive helper function has all the interesting stuff:

– Recursive calls must “pass down” correct environment

Then eval-exp just calls eval-under-env with same

expression and the empty environment

On homework, environments themselves are just Racket lists

containing Racket pairs of a string (the MUPL variable name, e.g.,
"x") and a MUPL value (e.g., (int 17))

Winter 2013 15 CSE341: Programming Languages

(define (eval-under-env e env)

 (cond … ; case for each kind of

)) ; expression

A grading detail

• Stylistically eval-under-env would be a helper function one

could define locally inside eval-exp

• But do not do this on your homework

– We have grading tests that call eval-under-env directly,

so we need it at top-level

Winter 2013 16 CSE341: Programming Languages

The best part

• The most interesting and mind-bending part of the homework is

that the language being implemented has first-class closures

– With lexical scope of course

• Fortunately, what you have to implement is what we have been

stressing since we first learned about closures…

Winter 2013 17 CSE341: Programming Languages

Higher-order functions

The “magic”: How do we use the “right environment” for lexical

scope when functions may return other functions, store them in

data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with

two parts) to keep the environment it will need to use later

Evaluate a function expression:

– A function is not a value; a closure is a value

• Evaluating a function returns a closure

– Create a closure out of (a) the function and (b) the current

environment when the function was evaluated

Evaluate a function call:

– …
Winter 2013 18 CSE341: Programming Languages

(struct closure (env fun) #:transparent)

Function calls

• Use current environment to evaluate e1 to a closure

– Error if result is a value that is not a closure

• Use current environment to evaluate e2 to a value

• Evaluate closure’s function’s body in the closure’s environment,

extended to:

– Map the function’s argument-name to the argument-value

– And for recursion, map the function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is only ever evaluated using the

environment part (extended), not the environment at the call-site

Winter 2013 19 CSE341: Programming Languages

(call e1 e2)

Is that expensive?

• Time to build a closure is tiny: a struct with two fields

• Space to store closures might be large if environment is large

– But environments are immutable, so natural and correct to

have lots of sharing, e.g., of list tails (cf. lecture 3)

– Still, end up keeping around bindings that are not needed

• Alternative used in practice: When creating a closure, store a

possibly-smaller environment holding only the variables that are

free variables in the function body

– Free variables: Variables that occur, not counting shadowed

uses of the same variable name

– A function body would never need anything else from the

environment

Jan-Mar 2013 20 Dan Grossman, Programming Languages

Free variables examples

(lambda () (+ x y z)) ; {x, y, z}

(lambda (x) (+ x y z)) ; {y, z}

(lambda (x) (if x y z)) ; {y, z}

(lambda (x) (let ([y 0]) (+ x y z))) ; {z}

(lambda (x y z) (+ x y z)) ; {}

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; {y, z}

Jan-Mar 2013 21 Dan Grossman, Programming Languages

Computing free variables

• So does the interpreter have to analyze the code body every

time it creates a closure?

• No: Before evaluation begins, compute free variables of every

function in program and store this information with the function

• Compared to naïve store-entire-environment approach, building

a closure now takes more time but less space

– And time proportional to number of free variables

– And various optimizations are possible

• [Also use a much better data structure for looking up variables

than a list]

Jan-Mar 2013 22 Dan Grossman, Programming Languages

Optional: compiling higher-order functions

• If we are compiling to a language without closures (like

assembly), cannot rely on there being a “current environment”

• So compile functions by having the translation produce “regular”

functions that all take an extra explicit argument called

“environment”

• And compiler replaces all uses of free variables with code that

looks up the variable using the environment argument

– Can make these fast operations with some tricks

• Running program still creates closures and every function call

passes the closure’s environment to the closure’s code

Jan-Mar 2013 23 Dan Grossman, Programming Languages

Recall…

Our approach to language implementation:

• Implementing language B in language A

• Skipping parsing by writing language B programs directly in

terms of language A constructors

• An interpreter written in A recursively evaluates

What we know about macros:

• Extend the syntax of a language

• Use of a macro expands into language syntax before the

program is run, i.e., before calling the main interpreter function

Winter 2013 24 CSE341: Programming Languages

Put it together

With our set-up, we can use language A (i.e., Racket) functions that

produce language B abstract syntax as language B “macros”

– Language B programs can use the “macros” as though they

are part of language B

– No change to the interpreter or struct definitions

– Just a programming idiom enabled by our set-up

• Helps teach what macros are

– See code for example “macro” definitions and “macro” uses

• “macro expansion” happens before calling eval-exp

Winter 2013 25 CSE341: Programming Languages

Hygiene issues

• Earlier we had material on hygiene issues with macros

– (Among other things), problems with shadowing variables

when using local variables to avoid evaluating expressions

more than once

• The “macro” approach described here does not deal well with this

Winter 2013 26 CSE341: Programming Languages

