CSE341: Programming Languages

Lecture 5
More Datatypes and Pattern-Matching

Dan Grossman
Winter 2013

Useful examples

Let’s fix the fact that our only example datatype so far was silly...

 Enumerations, including carrying other data

datatype suit = Club | Diamond | Heart | Spade

datatype card value = Jack | Queen | King
| Ace | Num of int

« Alternate ways of identifying real-world things/people

datatype id = StudentNum of int
| Name of string
* (string option)
* string

Winter 2013 CSE341: Programming Languages

Don’t do this

Unfortunately, bad training and languages that make one-of types
Inconvenient lead to common bad style where each-of types are
used where one-of types are the right tool

(* use the studen num and ignore other
fields unless the student num is ~1 ¥*)

{ student num : int,

first : string,
middle : string option,
last : string }

» Approach gives up all the benefits of the language enforcing
every value is one variant, you don'’t forget branches, etc.

 And it makes it less clear what you are doing

Winter 2013 CSE341: Programming Languages

That said...

But if instead, the point is that every “person” in your program has a
name and maybe a student number, then each-of is the way to go:

{ student num : int option,

first : string,
middle : string option,
last : string }

Winter 2013 CSE341: Programming Languages 4

Expression Trees

A more exciting (?) example of a datatype, using self-reference

datatype exp = Constant of int
| Negate of exp

| Add of exp * exp
I

Multiply of exp * exp

An expression in ML of type exp:
Add (Constant (10+9), Negate (Constant 4))

How to picture the resulting value in your head:
Add

N

Constant Negate

I |
19 Constant
|

4
Winter 2013 CSE341: Programming Languages

Recursion

Not surprising:
Functions over recursive datatypes are usually recursive

fun eval e =
case e of

Constant 1 => 1
| Negate e2 => ~ (eval e2)
| Add(el,e2) => (eval el) + (eval e2)

| Multiply(el,e2) => (eval el) * (eval e2)

Winter 2013 CSE341: Programming Languages

Putting it together

datatype exp Constant of int

| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

Let’s define max constant : exp -> int

Good example of combining several topics as we program:
— Case expressions
— Local helper functions
— Avoiding repeated recursion
— Simpler solution by using library functions

See the . sml file...

Winter 2013 CSE341: Programming Languages

Careful definitions

When a language construct is “new and strange,” there is more
reason to define the evaluation rules precisely...

... SO let’s review datatype bindings and case expressions “so far”
— Extensions to come but won’t invalidate the “so far”

Winter 2013 CSE341: Programming Languages

Datatype bindings

datatype t = Cl of 1 | C2 of t2 | .. | Cn of tn

Adds type t and constructors Ci of type ti->t
— Ci v is avalue, i.e., the result “includes the tag”

Omit “of t” for constructors that are just tags, no underlying data
— Such a Ci is a value of type t

Given an expression of type t, use case expressions to:

— See which variant (tag) it has
— Extract underlying data once you know which variant

Winter 2013 CSE341: Programming Languages

Datatype bindings

case e of pl => el | p2 => e2 | .. | pn => en

As usual, can use a case expressions anywhere an expression goes
— Does not need to be whole function body, but often is

Evaluate e to a value, call it v

If pi Is the first pattern to match v, then result is evaluation of ei In
environment “extended by the match”

Pattern Ci (x1,..,xn) matches value Ci (v1,..,vn) and extends
the environment with x1 tovl ... xn to vn

— For “no data” constructors, pattern Ci matches value Ci

Winter 2013 CSE341: Programming Languages 10

Recursive datatypes

Datatype bindings can describe recursive structures
— Have seen arithmetic expressions
— Now, linked lists:

datatype my int list = Empty
| Cons of int * my int list

val x = Cons(4,Cons(23,Cons (2008 ,Empty)))
fun append my list (xs,ys) =
case xs of

Empty => ys
| Cons(x,xs’) => Cons(x, append my list(xs’,6ys))

Winter 2013 CSE341: Programming Languages 11

Options are datatypes

Options are just a predefined datatype binding
— NONE and SOME are constructors, not just functions
— SO0 use pattern-matching not isSome and valOf

fun inc or zero intoption =
case intoption of
NONE => 0
| SOME i => i+l

Winter 2013 CSE341: Programming Languages 12

Lists are datatypes

Do not use hd, t1, or null either
— [] and :: are constructors too
— (strange syntax, particularly infix)

fun sum list xs =
case xs of
[] =>0
| x::xs’ => x + sum list xs’

fun append (xs,ys) =
case xs of
[] => ys
| x::xs’ => x :: append(xs’ ,hys)

Winter 2013 CSE341: Programming Languages

Why pattern-matching

« Pattern-matching is better for options and lists for the same
reasons as for all datatypes

— No missing cases, no exceptions for wrong variant, etc.

 We just learned the other way first for pedagogy
— Do not use isSome, valOf, null, hd, t1 on Homework 2

« Sowhy are null, tl1, etc. predefined?

— For passing as arguments to other functions (next week)
— Because sometimes they are convenient
— But not a big deal: could define them yourself

Winter 2013 CSE341: Programming Languages

14

Excitement ahead...

Learn some deep truths about “what is really going on”
— Using much more syntactic sugar than we realized

« Every val-binding and function-binding uses pattern-matching
« Every function in ML takes exactly one argument

First need to extend our definition of pattern-matching...

Winter 2013 CSE341: Programming Languages 15

Each-of types

So far have used pattern-matching for one of types because we
needed a way to access the values

Pattern matching also works for records and tuples:
— The pattern (x1,...,xn)
matches the tuple value (v1,..,vn)
— The pattern {£1=x1, .., f£n=xn}
matches the record value {f1=v1l, .., fn=vn}
(and fields can be reordered)

Winter 2013 CSE341: Programming Languages

16

Example

This is poor style, but based on what | told you so far, the only way
to use patterns

— Works but poor style to have one-branch cases

fun sum triple triple =
case triple of
(x, v, z2) =>x+y + z

fun full_name r =
case r of
{first=x, middle=y, last=z} =>

X A 1A 1A A y A 1A 1A A A

Winter 2013 CSE341: Programming Languages 17

Val-binding patterns

 New feature: A val-binding can use a pattern, not just a variable

— (Turns out variables are just one kind of pattern, so we just
told you a half-truth in lecture 1)

val p = e

» Great for getting (all) pieces out of an each-of type
— Can also get only parts out (not shown here)

« Usually poor style to put a constructor pattern in a val-binding

— Tests for the one variant and raises an exception if a
different one is there (like hd, t1, and valOf)

Winter 2013 CSE341: Programming Languages 18

Better example

This is okay style
— Though we will improve it again next
— Semantically identical to one-branch case expressions

fun sum triple triple =
let val (x, y, z) = triple
in
X +y + z
end

fun full name r =
let val {first=x, middle=y, last=z} = r

in
xA""AyA""Az

end

Winter 2013 CSE341: Programming Languages

19

Function-argument patterns

A function argument can also be a pattern
— Match against the argument in a function call

fun £f p = e

Examples (great style!):

fun sum triple (x, y, z) =
X +y + z

fun full name {first=x, middle=y, last=z} =

X A " " A y A " " A A

Winter 2013 CSE341: Programming Languages 20

A new way to go

* For Homework 2:
— Do not use the # character

— Do not need to write down any explicit types

Winter 2013 CSE341: Programming Languages

21

Hmm

A function that takes one triple of type int*int*int and returns
an int that is their sum:

fun sum triple (x, y, z) =
X +y + z

A function that takes three int arguments and returns
an int thatis their sum

fun sum triple (x, y, z) =
X +y + z

See the difference? (Me neither.) ©

Winter 2013 CSE341: Programming Languages 22

The truth about functions

* In ML, every function takes exactly one argument (*)

« What we call multi-argument functions are just functions taking
one tuple argument, implemented with a tuple pattern in the
function binding

— Elegant and flexible language design

« Enables cute and useful things you cannot do in Java, e.g.,

fun rotate left (x, y, z) = (y, z, x)
fun rotate right t = rotate left(rotate left t)

* “Zero arguments” is the unit pattern () matching the unit value ()

Winter 2013 CSE341: Programming Languages 23

