
CSE 341 Winter 2015

1

CSE 341, Winter 2015 1

Type Systems
•  Terms to learn about types:

–  Type
–  Type system
–  Statically typed language
–  Dynamically typed language
–  Type error
–  Strongly typed
–  Weakly typed
–  Type safe program
–  Type safe language

•  Related concepts:
–  Polymorphism
–  Overloading
–  Coercion

CSE 341, Winter 2015 2

Type – Definition
•  Type: a set of values and operations on those values
•  Java examples of types:

–  int
–  values = {-231, …, -2, -1, 0, 1, 2, … , 231-1} (231 = 2,147,483,648)
–  operations = {+, -, *, …}

–  boolean
–  values = {false, true}
–  operations = {&&, ||, !, …}

–  String
–  values = {“”, “a”, “b”, … , “A”, …, “$”, … “Σ”, … “aa”, “ab”, …}
–  operations = {+, trim(), equals(Object x), clone(), …}

–  Applet
–  values = [all possible applets]
–  operations = {init(), paint(Graphics g), clone(), …}

CSE 341, Winter 2015 3

Type System

•  A well-defined system of associating types with
variables and expressions in the language

CSE 341, Winter 2015 4

Statically Typed Languages

•  Statically typed. Statically typed means that
the type of every expression can be determined
at compile time. Java and Haskell are examples
of statically typed languages. (Scheme and Ruby
are not statically typed though.)

•  Each variable has a single type throughout the
lifetime of that variable at runtime.

•  Note that “statically typed” is not the same as
“type declarations are required”.

CSE 341, Winter 2015 5

Dynamically Typed Languages

•  Dynamically typed. The types of expressions
are not known until runtime.
–  Example languages: Scheme, Smalltalk, Python, Ruby.
–  Usually, the type of a variable can change dynamically

during the execution of the program. (Some authors
make this part of the definition, although we won’t for
341.)

•  This is legal Scheme code:
 ;; don’t need to declare the type of x
 (define x 42)
 (set! x ′(1 2 squid))

CSE 341, Winter 2015 6

Type error
•  A type error is a runtime error that occurs when we

attempt an operation on a value for which that
operation is not defined.
–  With a static type system, we can determine at compile time

whether such a type error could occur -- thus avoiding a
runtime type error.

•  Examples:
boolean b, c;
b = c+1;

int i;
boolean b;
i = b;

CSE 341 Winter 2015

2

CSE 341, Winter 2015 7

Type Safety
•  A program is type safe if it is known to be free of type

errors.
–  However, the system is allowed to halt at runtime before

performing an operation that would result in a type error.
•  A language is type safe if all legal programs in that

language are type safe.
•  Java, Smalltalk, Scheme, Haskell, Ruby, and Ada are

examples of type safe languages.
•  Fortran and C are examples of languages that aren’t

type safe.
•  Languages often have some sort of escape hatch that,

strictly speaking, makes them not type safe. (Even
Haskell!) We will usually still call them type safe
languages.

CSE 341, Winter 2015 8

Tradeoffs

•  Generally we want languages to be type safe.
•  An exception is a language used for some kinds of

systems programming, for example writing a garbage
collector. The “safe subset” approach is one way to deal
with this problem.

•  Advantages of static typing:
–  catch errors at compile time
–  machine-checkable documentation
–  potential for improved efficiency

•  Advantages of dynamic typing:
–  Flexibility
–  rapid prototyping

CSE 341, Winter 2015 9

Strongly Typed Language

•  We’ll define a strongly typed language to be
the same as a type safe language.
–  However, you may want to avoid this term – or at

least explain what you mean. (See the next slide.)

•  Weakly typed means “not strongly typed”.

CSE 341, Winter 2015 10

Terminology about Types - Problems

•  Unfortunately different authors use different definitions for the
terms “statically typed” and “strongly typed”.

•  Statically typed. We define “statically typed” to mean that the
compiler can statically assign a correct type to every expression.
–  Others define statically typed to mean that the compiler can statically

assign a type to every expression, but that type might be wrong. (By
this alternate definition C and Fortran are statically typed.)

•  Strongly typed. We’ll define strongly typed to mean the same as
type safe.

•  For others, strongly typed implies type safe and statically typed. (Is
Scheme strongly typed?)

•  To avoid misunderstanding, one can describe a language as e.g.
“type safe and statically typed” rather than “strongly typed”.

•  See the Wikipedia article on “Strongly typed” for a long list of what
different people have meant by this term.

CSE 341, Winter 2015 11

Polymorphism, Overloading, and
Coercion

•  A polymorphic function is a single function that can be applied to
several different types. The append function in Haskell is an
example: it can be used on lists with any type of element.

 (++) :: [a] -> [a] -> [a]
Note that there is just one definition of the function ++.

•  An overloaded function is a function with several different
definitions. The language implementation chooses the correct
definition based on the types of the arguments (and for a few
languages based on the type of the result -- generally not though).
This can be done either at compile time or run time. In Haskell it’s
done at compile time. Examples: +, the “show” function.

CSE 341, Winter 2015 12

Polymorphism, Overloading, and
Coercion (continued)

•  Coercion means that the language implementation converts one
type to another to match the requirements of the function or
operator. Typical example: coerce an integer to a float in

 3 + 4.138
•  Many languages support this (Fortran, Java, Smalltalk, ….)
•  However, Haskell does not support coercion. Instead, the type of 3

(for example) is more general than Int or Float -- it is
 (Num t) => t

Try this:

 a = 3 :: Int
 b = 4 :: Float
 c = a + b

