
4/7/16

1

CSE	341
Section	2

Nicholas	Shahan
Spring	2016

Adapted	 from	 s lides 	by	 Patrick	 Larson,	 and	 Dan	 Grossman

Today’s	Agenda

• Type	Synonyms
• Type	Generality
• Equality	Types
• More	Syntactic	Sugar

Type	Synonyms

• What	does	int * int * int represent?
• In	HW1	we	called	it	a	date
• Wouldn’t	it	be	nice	to	reflect	this	representation	in	
the	source	code	itself?

type date = int * int * int

type vs	datatype

• datatype introduces	a	new	type	name,	distinct	
from	all	existing	types

• type is	just	another	name

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace

| Num of int

type card = suit * rank

Type	Synonyms

Why?	
• For	now,	just	for	convenience
• It	doesn’t	let	us	do	anything	new

Later	in	the	course	we	will	 see	another	use	related	 to	
modularity.

Type	Generality

Write	a	 function	that	appends	two	string	lists…

4/7/16

2

Type	Generality

• We	would	expect

string list * string list -> string list

‘a list * ‘a list -> ‘a list

• But	the	type	checker	found

• Why	is	this	OK?

More	General	Types

• The	 type

‘a list * ‘a list -> ‘a list

string list * string list -> string list

is	more	general than	the	type

and	“can	be	used”	as	any	less	general	type,	such	as

int list * int list -> int list

• But	it	is	not more	general	than	the	type

int list * string list -> int list

The	Type	Generality	Rule

The	“more	general”	rule

A	type	t1 is	more	general than	the	type	t2 if	
you	can	take	t1,	replace	it’s	 type	variables	
consistently,	and	get	t2

Equality	Types

Write	a	 list	contains	function…

Equality	Types

• The	double	quoted	variable	arises	from	use	of	the	
= operator
• We	can	use	= on	most	types	like	int,	bool,	string,	
tuples	(that	contain	only	“equality	types”)
• Functions	and	real are	not	”equality	types”

• Generality	 rules	work	the	same,	except	substitution	
must	be	some	type	which	can	be	compared	with	=
• You	can	ignore	warnings	about	“calling	polyEqual”

Syntactic	Sugar

• If-then-else	is	implemented	as	syntactic	sugar	for	a	
case	statement.
• Function-pattern-case	syntax

