
5/26/16

1

CSE	341
Section	9

Nicholas	Shahan
Spring	2016

Adapted	 from	 s lides 	by	 Cody	 Schroeder,	 and	 Dan	 Grossman

Today’s	Agenda

• Double	Dispatch	Again
• Mixins
• The	Visitor	Pattern

2

Dispatch	Overview

Dispatch	is	the	runtimeprocedure	for	looking	up	which	
function	to	call	based	on	the	parameters	given:
• Ruby	(and	Java)	use	Single	Dispatch on	the	implicit	self
parameter
• Uses	 runtime	 class	 of	self to	 lookup	 the	 method	when	 a	call	 is	made
• This	 is	what	 you	 learned	 in	CSE	143

• Double	Dispatch uses	the	runtime	classes	of	both	self and	a	
single	method	parameter
• Ruby/Java	 do	not	have	 this,	 but	 we	can	emulate	 it
• This	 is	what	 you	will	 do	 in	 HW7

• You	can	dispatch	on	any	number	of	the	parameters	and	the	
general	term	for	this	is	Multiple	Dispatch or	Multimethods

3

Emulating	Double	Dispatch

• To	emulate	double	dispatch	in	Ruby	(on	HW7)	just	
use	the	built-in	single	dispatch	procedure	twice!
• Have	the	principal	method	immediately	call	another	
method	on	its	first	parameter,	passing	self as	an	
argument
• The	second	call	will	implicitly	know	the	class	of	the	self
parameter
• It	will	also	know	the	class	of	the	first	parameter	of	the	
principal	method,	because	of	Single	Dispatch

• There	are	other	ways	to	emulate	double	dispatch
• Found	as	an	idiom	in	SML	by	using	case	expressions

4

Double	Dispatch	Example

5

class A
def f x

x.fWithA self
end

def fWithA a
"(a, a) case"

end

def fWithB b
"(b, a) case"

end
end

class B
def f x

x.fWithB self
end

def fWithA a
"(a, b) case"

end

def fWithB b
"(b, b) case"

end
end

Mixins

• A	mixin is	(just)	a	collection	of	methods
• Less	than	a	class:	no	instances	of	it

• Languages	with	mixins (e.g.,	Ruby	modules)	
typically	let	a	class	have	one	superclass	but	include
any	number	of	mixins
• Semantics:	Including	a	mixin makes	its	methods	
part	of	the	class
• Extending	or	overriding	in	the	order	mixins are	included	in	
the	class	definition
• More	powerful	than	helper	methods	because	mixin methods	
can	access	methods	(and	instance	variables)	on	self	not	
defined	in	the	mixin

6

5/26/16

2

Mixin Example

7

module Doubler
def double
self + self # assume included in classes w/ +

end
end
class String
include Doubler

end
class AnotherPt
attr_accessor :x, :y
include Doubler
def + other
ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans

end

Method	Lookup	Rules

Mixins change	our	lookup	rules	slightly:
• When	looking	for	receiver	obj's method	m,	look	in	
obj's class,	then	mixins that	class	includes	(later	
includes	shadow),	then	obj's superclass,	then	the	
superclass'	mixins,	etc.
• As	for	instance	variables,	the	mixin methods	are	
included	in	the	same	object
• So	usually	bad	style	for	mixin methods	to	use	instance	
variables	since	names	can	clash

8

The	Two	Big	Ones

The	two	most	 popular/useful	 mixins in	 Ruby:
• Comparable:	 Defines	<,	>,	==,	!=,	>=,	<= in	terms	of	
<=>
• http://ruby-doc.org/core-2.2.3/Comparable.html

• Enumerable:	 	Defines	many	iterators	(e.g.,	map,	find)	
in	terms	 of	each
• http://ruby-doc.org/core-2.2.3/Enumerable.html

• Great	examples	 of	 using	mixins:
• Classes	including	them	get	a	bunch	of	methods	for	just	a	little	
work
• Classes	do	not	“spend”	their	“one	superclass”	for	this
• Does	not	bring	on	the	complexity	of	multiple	inheritance

9

The	Visitor	Pattern

• A	template	 for	handling	a	functional	composition	in	
OOP
• OOP	wants	to	group	code	by	classes
• We	want	code	grouped	by	functions

• This	 makes	 it	easier	 to	add	operations	 at	a	 later	 time.

• Relies	on	Double	Dispatch!!!
• Dispatch	based	on	(VisitorType,	ValueType)	pairs.

• Often	used	to	compute	over	AST’s	(abstract	syntax	
trees)
• Heavily	used	in	compilers

10

