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The Goal

In ML, we often define datatypes and write recursive functions over 
them – how do we do analogous things in Racket?

– First way: With lists
– Second way: With structs [a new construct]

• Contrast helps explain advantages of structs
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Life without datatypes

Racket has nothing like a datatype binding for one-of types

No need in a dynamically typed language:
– Can just mix values of different types and use primitives like 
number?, string?, pair?, etc. to “see what you have”

– Can use cons cells to build up any kind of data
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Mixed collections

In ML, cannot have a list of “ints or strings,” so use a datatype:

In Racket, dynamic typing makes this natural without explicit tags
– Instead, every value has a tag with primitives to check it
– So just check car of list with number? or string?
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datatype int_or_string = I of int | S of string

fun funny_sum xs = (* int_or_string list -> int *)
case xs of 

[] => 0
| (I i)::xs’ => i + funny_sum xs’
| (S s)::xs’ => String.size s + funny_sum xs’



Recursive structures

More interesting datatype-programming we know:

Autumn 2018 5CSE341: Programming Languages

datatype exp = Const of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

fun eval_exp e = 
case e of 

Const i => i
| Negate e2 => ~ (eval_exp e2)
| Add(e1,e2) => (eval_exp e1) + (eval_exp e2)
| Multiply(e1,e2)=>(eval_exp e1)*(eval_exp e2)



Change how we do this

• Previous version of eval_exp has type exp -> int

• From now on will write such functions with type exp -> exp

• Why?  Because will be interpreting languages with multiple 
kinds of results (ints, pairs, functions, …)
– Even though much more complicated for example so far

• How? See the ML code file:
– Base case returns entire expression, e.g., (Const 17)

– Recursive cases:
• Check variant (e.g., make sure a Const)
• Extract data (e.g., the number under the Const)
• Also return an exp (e.g., create a new Const)
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New way in Racket

See the Racket code file for coding up the same new kind of     
“exp -> exp” interpreter

– Using lists where car of list encodes “what kind of exp”

Key points:
• Define our own constructor, test-variant, extract-data functions

– Just better style than hard-to-read uses of car, cdr
• Same recursive structure without pattern-matching
• With no type system, no notion of “what is an exp” except in 

documentation
– But if we use the helper functions correctly, then okay
– Could add more explicit error-checking if desired
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Symbols

Will not focus on Racket symbols like 'foo, but in brief:
– Syntactically start with quote character
– Like strings, can be almost any character sequence
– Unlike strings, compare two symbols with eq? which is fast
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New feature

Defines a new kind of thing and introduces several new functions:
• (foo e1 e2 e3) returns “a foo” with bar, baz, quux fields 

holding results of evaluating e1, e2, and e3
• (foo? e) evaluates e and returns #t if and only if the result is 

something that was made with the foo function
• (foo-bar e) evaluates e.  If result was made with the foo

function, return the contents of the bar field, else an error
• (foo-baz e) evaluates e.  If result was made with the foo

function, return the contents of the baz field, else an error
• (foo-quux e) evaluates e.  If result was made with the foo

function, return the contents of the quux field, else an error
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(struct foo (bar baz quux) #:transparent)



An idiom

For “datatypes” like exp, create one struct for each “kind of exp”
– structs are like ML constructors!
– But provide constructor, tester, and extractor functions

• Instead of patterns
• E.g., const, const?, const-int

– Dynamic typing means “these are the kinds of exp” is “in 
comments” rather than a type system

– Dynamic typing means “types” of fields are also “in 
comments”
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(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)



All we need
These structs are all we need to:

• Build trees representing expressions, e.g.,

• Build our eval-exp function (see code):
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(multiply (negate (add (const 2) (const 2)))   
(const 7))

(define (eval-exp e)
(cond [(const? e) e]

[(negate? e)
(const (- (const-int

(eval-exp (negate-e e)))))]
[(add? e) …]
[(multiply? e) …]…



Attributes

• #:transparent is an optional attribute on struct definitions
– For us, prints struct values in the REPL rather than hiding 

them, which is convenient for debugging homework

• #:mutable is another optional attribute on struct definitions
– Provides more functions, for example:

– Can decide if each struct supports mutation, with usual 
advantages and disadvantages

• As expected, we will avoid this attribute
– mcons is just a predefined mutable struct
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(struct card (suit rank) #:transparent #:mutable)
; also defines set-card-suit!, set-card-rank!



Contrasting Approaches

Versus

This is not a case of syntactic sugar
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(struct add (e1 e2) #:transparent)

(define (add e1 e2) (list 'add e1 e2)) 
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))



The key difference

• The result of calling (add x y) is not a list
– And there is no list for which add? returns #t

• struct makes a new kind of thing: extending Racket with a new 
kind of data

• So calling car, cdr, or mult-e1 on “an add” is a run-time error
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(struct add (e1 e2) #:transparent)



List approach is error-prone

• Can break abstraction by using car, cdr, and list-library 
functions directly on “add expressions”
– Silent likely error:
(define xs (list (add (const 1)(const 4)) …))
(car (car xs))

• Can make data that add? wrongly answers #t to
(cons 'add "I am not an add")
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(define (add e1 e2) (list 'add e1 e2)) 
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))



Summary of advantages

Struct approach:

• Is better style and more concise for defining data types

• Is about equally convenient for using data types 

• But much better at timely errors when misusing data types
– Cannot use accessor functions on wrong kind of data
– Cannot confuse tester functions
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More with abstraction

Struct approach is even better combined with other Racket features 
not discussed here:

• The module system lets us hide the constructor function to 
enforce invariants
– List-approach cannot hide cons from clients
– Dynamically-typed languages can have abstract types by 

letting modules define new types!

• The contract system lets us check invariants even if constructor 
is exposed
– For example, fields of “an add” must also be “expressions”
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Struct is special

Often we end up learning that some convenient feature could be 
coded up with other features

Not so with struct definitions:

• A function cannot introduce multiple bindings

• Neither functions nor macros can create a new kind of data
– Result of constructor function returns #f for every other 

tester function: number?, pair?, other structs’ tester 
functions, etc.
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