
CSE341: Programming Languages

Lecture 16
Datatype-Style Programming

With Lists or Structs

Dan Grossman
Autumn 2018

The Goal

In ML, we often define datatypes and write recursive functions over
them – how do we do analogous things in Racket?

– First way: With lists
– Second way: With structs [a new construct]

• Contrast helps explain advantages of structs

Autumn 2018 2CSE341: Programming Languages

Life without datatypes

Racket has nothing like a datatype binding for one-of types

No need in a dynamically typed language:
– Can just mix values of different types and use primitives like
number?, string?, pair?, etc. to “see what you have”

– Can use cons cells to build up any kind of data

Autumn 2018 3CSE341: Programming Languages

Mixed collections

In ML, cannot have a list of “ints or strings,” so use a datatype:

In Racket, dynamic typing makes this natural without explicit tags
– Instead, every value has a tag with primitives to check it
– So just check car of list with number? or string?

Autumn 2018 4CSE341: Programming Languages

datatype int_or_string = I of int | S of string

fun funny_sum xs = (* int_or_string list -> int *)
case xs of

[] => 0
| (I i)::xs’ => i + funny_sum xs’
| (S s)::xs’ => String.size s + funny_sum xs’

Recursive structures

More interesting datatype-programming we know:

Autumn 2018 5CSE341: Programming Languages

datatype exp = Const of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

fun eval_exp e =
case e of

Const i => i
| Negate e2 => ~ (eval_exp e2)
| Add(e1,e2) => (eval_exp e1) + (eval_exp e2)
| Multiply(e1,e2)=>(eval_exp e1)*(eval_exp e2)

Change how we do this

• Previous version of eval_exp has type exp -> int

• From now on will write such functions with type exp -> exp

• Why? Because will be interpreting languages with multiple
kinds of results (ints, pairs, functions, …)
– Even though much more complicated for example so far

• How? See the ML code file:
– Base case returns entire expression, e.g., (Const 17)

– Recursive cases:
• Check variant (e.g., make sure a Const)
• Extract data (e.g., the number under the Const)
• Also return an exp (e.g., create a new Const)

Autumn 2018 6CSE341: Programming Languages

New way in Racket

See the Racket code file for coding up the same new kind of
“exp -> exp” interpreter

– Using lists where car of list encodes “what kind of exp”

Key points:
• Define our own constructor, test-variant, extract-data functions

– Just better style than hard-to-read uses of car, cdr
• Same recursive structure without pattern-matching
• With no type system, no notion of “what is an exp” except in

documentation
– But if we use the helper functions correctly, then okay
– Could add more explicit error-checking if desired

Autumn 2018 7CSE341: Programming Languages

Symbols

Will not focus on Racket symbols like 'foo, but in brief:
– Syntactically start with quote character
– Like strings, can be almost any character sequence
– Unlike strings, compare two symbols with eq? which is fast

Autumn 2018 8CSE341: Programming Languages

New feature

Defines a new kind of thing and introduces several new functions:
• (foo e1 e2 e3) returns “a foo” with bar, baz, quux fields

holding results of evaluating e1, e2, and e3
• (foo? e) evaluates e and returns #t if and only if the result is

something that was made with the foo function
• (foo-bar e) evaluates e. If result was made with the foo

function, return the contents of the bar field, else an error
• (foo-baz e) evaluates e. If result was made with the foo

function, return the contents of the baz field, else an error
• (foo-quux e) evaluates e. If result was made with the foo

function, return the contents of the quux field, else an error

Autumn 2018 9CSE341: Programming Languages

(struct foo (bar baz quux) #:transparent)

An idiom

For “datatypes” like exp, create one struct for each “kind of exp”
– structs are like ML constructors!
– But provide constructor, tester, and extractor functions

• Instead of patterns
• E.g., const, const?, const-int

– Dynamic typing means “these are the kinds of exp” is “in
comments” rather than a type system

– Dynamic typing means “types” of fields are also “in
comments”

Autumn 2018 10CSE341: Programming Languages

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

All we need
These structs are all we need to:

• Build trees representing expressions, e.g.,

• Build our eval-exp function (see code):

Autumn 2018 11CSE341: Programming Languages

(multiply (negate (add (const 2) (const 2)))
(const 7))

(define (eval-exp e)
(cond [(const? e) e]

[(negate? e)
(const (- (const-int

(eval-exp (negate-e e)))))]
[(add? e) …]
[(multiply? e) …]…

Attributes

• #:transparent is an optional attribute on struct definitions
– For us, prints struct values in the REPL rather than hiding

them, which is convenient for debugging homework

• #:mutable is another optional attribute on struct definitions
– Provides more functions, for example:

– Can decide if each struct supports mutation, with usual
advantages and disadvantages

• As expected, we will avoid this attribute
– mcons is just a predefined mutable struct

Autumn 2018 12CSE341: Programming Languages

(struct card (suit rank) #:transparent #:mutable)
; also defines set-card-suit!, set-card-rank!

Contrasting Approaches

Versus

This is not a case of syntactic sugar

Autumn 2018 13CSE341: Programming Languages

(struct add (e1 e2) #:transparent)

(define (add e1 e2) (list 'add e1 e2))
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))

The key difference

• The result of calling (add x y) is not a list
– And there is no list for which add? returns #t

• struct makes a new kind of thing: extending Racket with a new
kind of data

• So calling car, cdr, or mult-e1 on “an add” is a run-time error

Autumn 2018 14CSE341: Programming Languages

(struct add (e1 e2) #:transparent)

List approach is error-prone

• Can break abstraction by using car, cdr, and list-library
functions directly on “add expressions”
– Silent likely error:
(define xs (list (add (const 1)(const 4)) …))
(car (car xs))

• Can make data that add? wrongly answers #t to
(cons 'add "I am not an add")

Autumn 2018 15CSE341: Programming Languages

(define (add e1 e2) (list 'add e1 e2))
(define (add? e) (eq? (car e) 'add))
(define (add-e1 e) (car (cdr e)))
(define (add-e2 e) (car (cdr (cdr e))))

Summary of advantages

Struct approach:

• Is better style and more concise for defining data types

• Is about equally convenient for using data types

• But much better at timely errors when misusing data types
– Cannot use accessor functions on wrong kind of data
– Cannot confuse tester functions

Autumn 2018 16CSE341: Programming Languages

More with abstraction

Struct approach is even better combined with other Racket features
not discussed here:

• The module system lets us hide the constructor function to
enforce invariants
– List-approach cannot hide cons from clients
– Dynamically-typed languages can have abstract types by

letting modules define new types!

• The contract system lets us check invariants even if constructor
is exposed
– For example, fields of “an add” must also be “expressions”

Autumn 2018 17CSE341: Programming Languages

Struct is special

Often we end up learning that some convenient feature could be
coded up with other features

Not so with struct definitions:

• A function cannot introduce multiple bindings

• Neither functions nor macros can create a new kind of data
– Result of constructor function returns #f for every other

tester function: number?, pair?, other structs’ tester
functions, etc.

Autumn 2018 18CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 16�Datatype-Style Programming �With Lists or Structs�
	The Goal
	Life without datatypes
	Mixed collections
	Recursive structures
	Change how we do this
	New way in Racket
	Symbols
	New feature
	An idiom
	All we need
	Attributes
	Contrasting Approaches
	The key difference
	List approach is error-prone
	Summary of advantages
	More with abstraction
	Struct is special

