
CSE341: Programming Languages

Lecture 6
Nested Patterns

Exceptions
Tail Recursion

Dan Grossman
Autumn 2018

Nested patterns

• We can nest patterns as deep as we want
– Just like we can nest expressions as deep as we want
– Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern
against a value for the “same shape” and bind variables to the
“right parts”
– More precise recursive definition coming after examples

Autumn 2018 2CSE341: Programming Languages

Useful example: zip/unzip 3 lists

Autumn 2018 3CSE341: Programming Languages

fun zip3 lists =
case lists of

([],[],[]) => []
| (hd1::tl1,hd2::tl2,hd3::tl3) =>

(hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
| _ => raise ListLengthMismatch

fun unzip3 triples =
case triples of

[] => ([],[],[])
| (a,b,c)::tl =>

let val (l1, l2, l3) = unzip3 tl
in

(a::l1,b::l2,c::l3)
end

More examples in .sml files

Style

• Nested patterns can lead to very elegant, concise code
– Avoid nested case expressions if nested patterns are simpler

and avoid unnecessary branches or let-expressions
• Example: unzip3 and nondecreasing

– A common idiom is matching against a tuple of datatypes to
compare them

• Examples: zip3 and multsign

• Wildcards are good style: use them instead of variables when
you do not need the data
– Examples: len and multsign

Autumn 2018 4CSE341: Programming Languages

(Most of) the full definition
The semantics for pattern-matching takes a pattern p and a value v
and decides (1) does it match and (2) if so, what variable bindings
are introduced.

Since patterns can nest, the definition is elegantly recursive, with a
separate rule for each kind of pattern. Some of the rules:
• If p is a variable x, the match succeeds and x is bound to v
• If p is _, the match succeeds and no bindings are introduced
• If p is (p1,…,pn) and v is (v1,…,vn), the match succeeds if and

only if p1 matches v1, …, pn matches vn. The bindings are the
union of all bindings from the submatches

• If p is C p1, the match succeeds if v is C v1 (i.e., the same
constructor) and p1 matches v1. The bindings are the bindings
from the submatch.

• … (there are several other similar forms of patterns)

Autumn 2018 5CSE341: Programming Languages

Examples

– Pattern a::b::c::d matches all lists with >= 3 elements

– Pattern a::b::c::[] matches all lists with 3 elements

– Pattern ((a,b),(c,d))::e matches all non-empty lists of
pairs of pairs

Autumn 2018 6CSE341: Programming Languages

Exceptions

An exception binding introduces a new kind of exception

The raise primitive raises (a.k.a. throws) an exception

A handle expression can handle (a.k.a. catch) an exception
– If doesn’t match, exception continues to propagate

Autumn 2018 7CSE341: Programming Languages

exception MyUndesirableCondition
exception MyOtherException of int * int

raise MyUndesirableException
raise (MyOtherException (7,9))

e1 handle MyUndesirableException => e2
e1 handle MyOtherException(x,y) => e2

Actually…

Exceptions are a lot like datatype constructors…

• Declaring an exception adds a constructor for type exn

• Can pass values of exn anywhere (e.g., function arguments)
– Not too common to do this but can be useful

• handle can have multiple branches with patterns for type exn

Autumn 2018 8CSE341: Programming Languages

Recursion
Should now be comfortable with recursion:

• No harder than using a loop (whatever that is )

• Often much easier than a loop
– When processing a tree (e.g., evaluate an arithmetic

expression)
– Examples like appending lists
– Avoids mutation even for local variables

• Now:
– How to reason about efficiency of recursion
– The importance of tail recursion
– Using an accumulator to achieve tail recursion
– [No new language features here]

Autumn 2018 9CSE341: Programming Languages

Call-stacks

While a program runs, there is a call stack of function calls that
have started but not yet returned

– Calling a function f pushes an instance of f on the stack
– When a call to f finishes, it is popped from the stack

These stack-frames store information like the value of local
variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same
function

Autumn 2018 10CSE341: Programming Languages

Example

Autumn 2018 11CSE341: Programming Languages

fun fact n = if n=0 then 1 else n*fact(n-1)

val x = fact 3

fact 3: 3*_ fact 3

fact 2

fact 3: 3*_ fact 3: 3*_

fact 2: 2*_

fact 1

fact 2: 2*_

fact 1: 1*_

fact 0

fact 3: 3*_

fact 2: 2*_

fact 1: 1*_

fact 0: 1

fact 3: 3*_

fact 2: 2*_

fact 1: 1*1

fact 3: 3*_

fact 2: 2*1

fact 3: 3*2

Example Revised

fun fact n =
let fun aux(n,acc) =

if n=0
then acc
else aux(n-1,acc*n)

in
aux(n,1)

end

val x = fact 3

Still recursive, more complicated, but the result of recursive
calls is the result for the caller (no remaining multiplication)

Autumn 2018 CSE341: Programming Languages 12

The call-stacks

Autumn 2018 13CSE341: Programming Languages

fact 3: _ fact 3

aux(3,1)

fact 3: _

aux(3,1):_

aux(2,3)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):_

aux(0,6)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):_

aux(0,6):6

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):6
Etc…

fact 3: _

aux(3,1):_

aux(2,3):6

An optimization

It is unnecessary to keep around a stack-frame just so it can get a
callee’s result and return it without any further evaluation

ML recognizes these tail calls in the compiler and treats them
differently:

– Pop the caller before the call, allowing callee to reuse the
same stack space

– (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do
tail-call optimization

Autumn 2018 14CSE341: Programming Languages

What really happens

Autumn 2018 15CSE341: Programming Languages

fun fact n =
let fun aux(n,acc) =

if n=0
then acc
else aux(n-1,acc*n)

in
aux(n,1)

end

val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)

Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting
functions to be tail-recursive can be much more efficient
– Tail-recursive: recursive calls are tail-calls

• There is a methodology that can often guide this transformation:
– Create a helper function that takes an accumulator
– Old base case becomes initial accumulator
– New base case becomes final accumulator

Autumn 2018 16CSE341: Programming Languages

Methodology already seen

Autumn 2018 17CSE341: Programming Languages

fun fact n =
let fun aux(n,acc) =

if n=0
then acc
else aux(n-1,acc*n)

in
aux(n,1)

end

val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)

Another example

Autumn 2018 18CSE341: Programming Languages

fun sum xs =
case xs of

[] => 0
| x::xs’ => x + sum xs’

fun sum xs =
let fun aux(xs,acc) =

case xs of
[] => acc

| x::xs’ => aux(xs’,x+acc)
in

aux(xs,0)
end

And another

Autumn 2018 19CSE341: Programming Languages

fun rev xs =
case xs of

[] => []
| x::xs’ => (rev xs’) @ [x]

fun rev xs =
let fun aux(xs,acc) =

case xs of
[] => acc

| x::xs’ => aux(xs’,x::acc)
in

aux(xs,[])
end

Actually much better

• For fact and sum, tail-recursion is faster but both ways linear time
• Non-tail recursive rev is quadratic because each recursive call

uses append, which must traverse the first list
– And 1+2+…+(length-1) is almost length*length/2
– Moral: beware list-append, especially within outer recursion

• Cons constant-time (and fast), so accumulator version much better

Autumn 2018 20CSE341: Programming Languages

fun rev xs =
case xs of

[] => []
| x::xs’ => (rev xs’) @ [x]

Always tail-recursive?

There are certainly cases where recursive functions cannot be
evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go
– You could get one recursive call to be a tail call, but rarely

worth the complication

Also beware the wrath of premature optimization
– Favor clear, concise code
– But do use less space if inputs may be large

Autumn 2018 21CSE341: Programming Languages

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
– If the result of f x is the “immediate result” for the

enclosing function body, then f x is a tail call

But we can define “tail position” recursively
– Then a “tail call” is a function call in “tail position”

…

Autumn 2018 22CSE341: Programming Languages

Precise definition

A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

• In fun f p = e, the body e is in tail position
• If if e1 then e2 else e3 is in tail position, then e2 and e3

are in tail position (but e1 is not). (Similar for case-expressions)
• If let b1 … bn in e end is in tail position, then e is in tail

position (but no binding expressions are)
• Function-call arguments e1 e2 are not in tail position
• …

Autumn 2018 23CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 6�Nested Patterns�Exceptions�Tail Recursion
	Nested patterns
	Useful example: zip/unzip 3 lists
	Style
	(Most of) the full definition
	Examples
	Exceptions
	Actually…
	Recursion
	Call-stacks
	Example
	Example Revised
	The call-stacks
	An optimization
	What really happens
	Moral of tail recursion
	Methodology already seen
	Another example
	And another
	Actually much better
	Always tail-recursive?
	What is a tail-call?
	Precise definition

