CSE 341: Section 5

1. What are the types of the following x1, x2, ... xX5? Some might have type errors:
b = True

x1 = if b then putStrLn "hi" else return ()

X2

if b then putStrLn "squid" else return "octopus"

x3 if b then "squid" else "octopus"

x4 = if b then "squid" else return ()

x5 do
putStr "testing"
X <- readLn

return (not x)

2. Give a recursive definition of a list doubles whose first element is 10, and whose n th
element is twice the n—- 1 st, i.e., [10, 20, 40, 80, 160, 320,]. To do this, write a helper
function doubles_from that takes a parameter n and returns a list of all the doubles
starting at n.

3. Give yet another non-recursive definition of doubles using the built-in function
iterate from the Haskell prelude. This is defined as follows:

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

4. Define a Haskell list dol1lars that is the infinite list of amounts of money you have
every year, assuming you start with $100 and get paid 5% interest, compounded yearly.
(Ignore inflation, deflation, taxes, bailouts, the possibility of total economic collapse, and
other such details.) So dollars should be equal to [100.0, 105.0, 110.25, ...]

5. Desugar the following actions:

lion = do
putStrLn "What is the color of your mane?"
color <- getlLine
putStrLn § "Rawr, nice

++ color ++ mane"

parity_repl = do
putStrLn "Enter a number"
n <- readlLn
case odd n of
True -> putStrLn $ (show n) ++ " is odd"
False -> putStrLn § (show n) ++ " is even"
parity_repl

map_reduce = do

A. putStrLn "Enter a unary mapping operation”

B. op <- getlLine

C. putStrLn "Enter a unary reducing operation”

D. reduce <- getlLine

E. putStrLn "Enter a list to evaluate"

F. 1st <- getlLine

G. let expr = "foldr1 (" ++ reduce ++ ") S map (" ++ op ++ ") " ++
1st

in evaluate expr

