PAUL G. ALLEN SCHOOL

w OF COMPUTER SCIENCE & ENGINEERING

CSE341: Programming Languages

Lecture 26
Course Victory Lap

Zach Tatlock
Winter 2018



Final Exam

As also indicated in class-list email:
* Next Thursday, 8:30-10:20AM
* Intention is to focus ~ 80% on material since the midterm
— Including topics on homeworks and not on homeworks
— Also ~ 20% ML, just as the post-midterm course has had
* You will need to write code and English

Winter 2018 CSE 341: Programming Languages



Victory Lap

A victory lap is an extra trip around the track
— By the exhausted victors (us) ©

Review course goals
— Slides from Introduction and Course-Motivation

Some big themes and perspectives
— Stuff for five years from now more than for the final

Maybe time for open Q&A

Course evals already done, but feel free to leave feedback!

Winter 2018 CSE 341: Programming Languages 3



Thank you!

* Huge thank-you to your TAs
— Great team effort
— Really invested in a successful course

Winter 2018 CSE 341: Programming Languages 4



Thank you!

* And a huge thank you to all of you
— Great attitude about a very different view of software
— Good class attendance and questions
— Occasionally laughed at stuff ©

« Computer science ought to be challenging and fun!

Winter 2018 CSE 341: Programming Languages



[From Lecture 1]

 Many essential concepts relevant in any programming language
— And how these pieces fit together

 Use ML, Racket, and Ruby languages:
— They let many of the concepts “shine”

— Using multiple languages shows how the same concept can
“look different” or actually be slightly different

— In many ways simpler than Java

« Big focus on functional programming
— Not using mutation (assignment statements) (!)
— Using first-class functions (can’t explain that yet)
— But many other topics too

Winter 2018 CSE 341: Programming Languages 6



[From Lecture 1]

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

Winter 2018 CSE 341: Programming Languages 7



[From Course Motivation]

No such thing as a “best” PL
Fundamental concepts easier to teach in some (multiple) PLs

A good PL is a relevant, elegant interface for writing software
— There is no substitute for precise understanding of PL semantics

Functional languages have been on the leading edge for decades

— ldeas have been absorbed by the mainstream, but very slowly

— First-class functions and avoiding mutation increasingly essential
— Meanwhile, use the ideas to be a better C/Java/PHP hacker

Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Winter 2018 CSE 341: Programming Languages 8



[From Course Motivation]

SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed
functional SML

object-oriented Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket. dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:

Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking

[and much more]

Winter 2018 CSE 341: Programming Languages 9



Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1
2. More functions/modules are equivalent: Unit 4
3. No need to make local copies of data: Unit 5
4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

— A fold over a collection (e.g., summing a list) is not!

Winter 2018 CSE 341: Programming Languages 10



Some other highlights

Function closures are really powerful and convenient...
— ... and implementing them is not magic

Datatypes and pattern-matching are really convenient...
— ... and exactly the opposite of OOP decomposition

Sound static typing prevents certain errors...
— ... and is inherently approximate

— ... and combine synergistically

Modularity is really important; languages can help

Winter 2018 CSE 341: Programming Languages

Subtyping and generics allow different kinds of code reuse...

11



From the syllabus

Successful course participants will:

Internalize an accurate understanding of what functional and
object-oriented programs mean

Develop the skills necessary to learn new programming
languages quickly

Master specific language concepts such that they can recognize
them in strange guises

Learn to evaluate the power and elegance of programming
languages and their constructs

Attain reasonable proficiency in the ML, Racket, and Ruby
languages and, as a by-product, become more proficient in
languages they already know

Winter 2018 CSE 341: Programming Languages 12



The End

Winter 2018

Don’t be a stranger!

CSE 341: Programming Languages

13



