
Name: ____________________________________________  Student ID #: ________________ 
 

Page 1 of 12 
 

CSE 341 Summer 2019 Midterm Exam 
July 26, 2019 

 

Do not turn the page until you are instructed to do so. 

Rules/Guidelines: 

 You must stop working promptly when time is called at 1:00pm. Any modifications to your exam (writing or 

erasing) will result in a penalty.  

 This exam is closed-book, closed-note, and closed-device with the exception of one side of one 8.5x 11” piece of 

paper. 

 There are 100 points distributed unevenly among 7 multi-part questions, plus one extra credit question. 

 The exam is printed double-sided, with 12 numbed pages. Page 2 is intentionally blank. 

 If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded. When in 

doubt, we will grade the answer that appears nearest to the question text. 

 If you write an answer on scratch paper, please both clearly label which question you are answering on the 

scratch paper and also clearly indicate on the question page that your answer is on scratch paper. Staple all 

scratch paper to the end of the exam before turning in. 

 

Advice: 

 Read all questions carefully. Be sure you understand the question before you begin your answer. 

 The questions are not necessarily in order of difficulty. Feel free to skip around. Be sure you are able to at least 

attempt every question. 

 Work on easier questions first, including the easiest parts of each question. Do not feel the need to answer all 

parts of one question before moving on to another. You can always circle back. 

 Do not attempt the extra credit until you have completed the rest of the exam. It is challenging and will not be 

worth a lot of points. 

 Write clearly and legibly. We cannot award credit for answers we cannot read. 

 Write down any thoughts or intermediate steps so we can award partial credit, but be sure to clearly indicate 

your final answer. 

 If you have questions, raise your hand to ask. The worst that can happen is we will say “I can’t answer that.” 

 Ask questions as soon as you have them. Do not wait until you have several questions at once. 

 Relax. You are here to learn. 

   



Name: ____________________________________________  Student ID #: ________________ 
 

Page 2 of 12 
 

 

 

  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 3 of 12 
 

1. Consider the following datatype, where a value of type race describes a track and field race: 

datatype race = 

    Sprint of int                   

    | Hurdles of int * int        

    | Relay of race * race        

 Values of this type can be interpreted as follows: 

 A value Sprint i represents a simple race of i meters.  

 A value Hurdles (n,d) represents a race of n hurdles with d meters separating each pair of hurdles as 

well as the first hurdle from the starting line and the last hurdle from the finish line. (You may assume that 

all hurdles races include at least one hurdle.) 

 A value Relay (r1,r2) represents a race consisting of the race r1 followed immediately by the race r2. 

 

a) Write a function total_distance of type race -> int that computes and returns the total distance of 

the argument race. You should assume that hurdles add no additional distance to a race other than the distance 

between them.  

 

fun total_distance r = 

    case r of 

 Sprint n => n 

      | Hurdles (n, d) => n * d + d 

      | Relay (r1, r2) => total_distance r1 + total_distance r2 

 

 

b) Write a function remove_hurdles of type race -> race that returns a new race of the same total 

distance and number of segments as the argument race, but with segments of hurdles replaced by a sprint of 

the same total distance.  

 

fun remove_hurdles r = 

    case r of 

 Hurdles (n, d) => Sprint (n * d + d) 

      | Relay (r1, r2) => Relay(remove_hurdles r1, remove_hurdles r2) 

      | _ => r 

 

 

 

  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 4 of 12 
 

c) Consider the following additional datatype, where a value of type run describes the actions a runner might take 

to complete a race: 

datatype run = 

  Run of int 

  | Jump 

 Values of this type can be interpreted as follows: 

 A value Run i means run i meters. 

 A value Jump means jump over a hurdle. 

Write a function run_race of type race -> run list that returns a list containing a sequence of actions a 

runner would take to complete the argument race. You may use the @ function if you wish. 

 

fun run_race r = 

    case r of 

 Hurdles (0, d) => [] 

      | Hurdles (n, d) => (Run d)::(Jump)::run_race(Hurdles(n - 1, d)) 

      | Sprint n => [Run n] 

      | Relay (r1, r2) => (run_race r1) @ (run_race r2)  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 5 of 12 
 

2. Consider the following function: 

fun mystery (xs, ys) = 

    case (xs, ys) of 

        ([], []) => 0                         (* 1 *) 

      | ([], y::ys') => 1 + mystery(xs, ys')  (* 2 *) 

      | (x::xs', ys) => 1 + mystery(xs', ys)  (* 3 *) 

a) What is the type of mystery? 

mystery : 'a list * 'b list -> int 

 

b) What does each of the following calls evaluate to? 

i. mystery ([], []) = 0 

 

 

ii. mystery ([], [1, 2, 3]) = 3 

 

 

iii. mystery ([1, 2, 3, 4, 5], []) = 5 

 

 

iv. mystery ([1, 2], [1, 2, 3, 4]) = 6 

 

 

c) Describe in 1-2 English sentences what mystery computes. 

Computes the sum of the lengths of the two argument lists. 

 

d) Suppose we make each of the following changes to mystery. Which of the following would be true after the 

change is made? (Circle one option for each change.) 

A. mystery no longer type-checks or gives a non-exhaustive match warning 

B. mystery still type-checks without warnings, but now gives a different result in at least one case 

C. mystery still type-checks without warnings and gives the same result in all cases  

Consider each change independently, and ignore the syntactic issue of adding or removing pipe characters (|) as 

necessary. 

A              B              C i. Line 2 is moved before line 1      

A              B              C ii. Line 3 is moved before line 2 

A              B              C iii. Line 2 is removed 

A              B              C 
iv. Line 2 is removed and line 3 is replaced with the following: 
   | (x::xs’, y::ys’) => 2 + mystery(xs’, ys’) 

 

  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 6 of 12 
 

3. For each of the following programs, if the program has a syntax error or does not type-check, give a short, 

specific sentence indicating what the error is. If the program does type-check, give the type of f and the value 

bound to ans after the program runs. Consider each part as a separate program. All programs use the following 

datatype: 

datatype greek = Alpha | Beta of string | Gamma of int * greek 

 

a) fun f (x, y) = 

    if x < y 

    then Beta "up" 

    else if x > y 

    then Beta "down" 

    else Alpha 

val ans = f (5, 2) 

 

f : (int * int) -> greek 

ans = Beta "down" 

 

 

b) fun f2 x = 
    case x of 

        Alpha => "A" 

      | Beta => "B" 

      | Gamma => "G" 

val ans = f2 Alpha 

 

   Does not type check: Beta and Gamma are constructors and need arguments 

 

 

 

c) fun f g x = 

    let 

      val (n, s) = g x 

    in 

      Gamma (n, Beta s) 

    end 

val ans = f (fn x => (5, "foo")) 9 

 

f : ('a -> (int * string)) -> 'a -> greek 

ans = Gamma (5, Beta "foo") 

 

 

d) fun f xs = 
case xs of 

[] => Alpha 

| x::[] => Beta  x 

| x::xs' => Gamma (x, f xs') 

val ans = f [1, 2, 3] 

 

Does not type check: The elements of xs cannot be both strings (to be 

passed to Beta) and ints (to be passed as the first argument to Gamma). 

 

 

  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 7 of 12 
 

4. Consider the following function: 

fun foldl_if_true f g acc xs = 

    case xs of 

 [] => acc 

      | x::xs' => if f x 

         then foldl_if_true f g (g(x, acc)) xs' 

         else foldl_if_true f g acc xs' 

 

a) What is the type of foldl_if_true? 

 

foldl_if_true : ('a -> bool) -> ('a * 'b -> 'a) -> 'b -> 'a list -> 'b 

 

b) Recall the following functions: 

List.foldl : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b  

List.filter : ('a -> bool) -> 'a list -> 'a list 

Use these functions to write a one-line alternate definition of foldl_if_true that is equivalent to the 

above definition. 

   

fun foldl_if_true f g acc xs = List.foldl g acc (List.filter f xs) 

 

c) Use a val binding and partial application of foldl_if_true to write a one-line definition of 

sum_evens, which has type int list -> int and returns the sum of all the even numbers in its 

argument. (Recall that ML uses the operator mod for modulo.) 

 

val sum_evens = foldl_if_true (fn x => x mod 2 = 0) (fn (x, y) => x + y) 0 

  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 8 of 12 
 

5.    This problems asks you to write three versions of the same function. 

a) Write a function ones_digits of type int list -> int list that returns a list containing the 

ones digit of each integer from the original list. Do not use any helper functions or any library functions 

besides :: and mod. You may assume all numbers in the argument list are non-negative. 

 

fun ones_digits xs = 

    case xs of 

        [] => [] 

      | x::xs' => (x mod 10)::(ones_digits xs') 

 

 

 

b) Write a second version of ones_digits that is tail-recursive. Do not use any library functions besides 

::, mod, and rev, though you may use one or more helper functions. 

 

fun ones_digits_tail xs = 

    let 

        fun loop (xs, acc) = 

            case xs of 

                [] => acc 

              | x::xs' => loop(xs', (x mod 10)::acc) 

    in 

        List.rev (loop(xs, [])) 

    end 

 

 

 

c) Recall the following function: 

List.map : ('a -> 'b) -> 'a list -> 'b list 

Write a third version of ones_digits using a val binding and a partial application of List.map. 

 

val ones_digits_maps = List.map (fn x => x mod 10)  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 9 of 12 
 

6. For each of the following pairs of expressions, indicate whether the expressions are ALWAYS functionally 

equivalent, NEVER functionally equivalent, or functionally equivalent only when f and g are both PURE 

functions (i.e. they always terminate, never throw exceptions, and have no side-effects). You may assume that f 

and g always have the same type but are not the same function, and that all expressions type-check 

 

  

Expression 1 Expression 2 Equivalent? 

f x + g x g x + f x PURE 

f x orelse g x if f x then g x else false NEVER 

fun h x = f (g x) val h = f o g ALWAYS 

(f x, g x) 

let  

    val z = g x 

    val y = f x  

in  

    (y, z)  

end 

PURE 

List.filter f (List.map g xs) List.filter (f o g) xs NEVER 



Name: ____________________________________________  Student ID #: ________________ 
 

Page 10 of 12 
 

7. This problem considers three ML modules ModTwo1, ModTwo2, and ModTwo3, and a signature MODMATH, 

shown on the next page. (You may find it useful to know that, in ML, val one = ~1 mod 2 binds one to 

the value 1. This is different from how that expression evaluates in Java.) 

 

a) Does each of the three modules type-check? (Circle “Y” or “N” for each module.) 

ModTwo1:  Y  /  N ModTwo2:  Y  /  N ModTwo3:  Y  /  N 

 

b) If possible, fill in each blank so that res evaluates to a value other than 0 or 1. If this is not possible, or if the 

module does not type-check, write “impossible” in the blank instead. 
 

val res = ModTwo1._impossible______________________ 

 

val res = ModTwo2._impossible______________________ 
 

val res = ModTwo3._impossible______________________ 

 

 

Now, suppose we replaced the line type modInt in the signature MODMATH with the line  

type modInt = int. 

 

c) Does each of the three modules type-check? (Circle “Y” or “N” for each module.) 

ModTwo1:  Y  /  N ModTwo2:  Y  /  N ModTwo3:  Y  /  N 

 

d) If possible, fill in each blank so that res evaluates to a value other than 0 or 1. If this is not possible, or if the 

module does not type-check, write “impossible” in the blank instead. 

 
val res = ModTwo1.fromInt 2________________________ 
 

val res = ModTwo2.toInt 2__________________________ 
 

val res = ModTwo3.__impossible_____________________ 

 

 

Now, suppose we replaced the line  val add : modInt * modInt -> modInt in the signature 

MODMATH with the line val add : modInt * modInt -> int. 

 

e) Does each of the three modules type-check? (Circle “Y” or “N” for each module.) 

ModTwo1:  Y  /  N ModTwo2:  Y  /  N ModTwo3:  Y  /  N 

 

f) If possible, fill in each blank so that res evaluates to a value other than 0 or 1. If this is not possible, or if the 

module does not type-check, write “impossible” in the blank instead. 

val res = ModTwo1.add(ModTwo1.fromInt 1, ModTwo1.fromInt 1)__ 
 

val res = ModTwo2.__impossible ____________________ 

 

val res = ModTwo3.__impossible_____________________ 

  



Name: ____________________________________________  Student ID #: ________________ 
 

Page 11 of 12 
 

signature MODMATH = 

sig 

    type modInt 

    val fromInt : int -> modInt 

    val toInt : modInt -> int         

    val add : modInt * modInt -> modInt 

    val subtract : modInt * modInt -> modInt 

end 

 

 

structure ModTwo1 :> MODMATH = 

struct 

 

type modInt = int 

 

fun fromInt n = n 

fun toInt n = n mod 2 

 

fun add (x, y) = x + y 

fun subtract (x, y) = x - y 

 

end 

 

 

structure ModTwo2 :> MODMATH = 

struct 

 

type modInt = int 

 

fun fromInt n = n mod 2 

fun toInt n = n 

 

fun add (x, y) = (x + y) mod 2 

fun subtract (x, y) = (x - y) mod 2 

          

end 

 

 

structure ModTwo3 :> MODMATH = 

struct 

 

datatype modInt = ZERO | ONE 

 

fun fromInt n = if n mod 2 = 0 then ZERO else ONE 

fun toInt n = case n of ZERO => 0 | ONE => 1 

 

fun add (x, y) =  

    case (x, y) of 

 (ZERO, ZERO) => ZERO 

      | (ONE, ONE) => ZERO 

      | _ => ONE 

 

val subtract = add 

 

end 

 



Name: ____________________________________________  Student ID #: ________________ 
 

Page 12 of 12 
 

8. EXTRA CREDIT – DO NOT ATTEMPT THIS PROBLEM UNTIL YOU HAVE COMPLETED THE REST OF THE EXAM 

Consider the following definitions: 

datatype Yo = Y of (Yo -> Yo) 

 

fun cool y = 

  case y of 

    Y f => f y 

 

Fill in the blank below so that evaluating the binding of uncool will not terminate. You may not use any library 

functions or create any additional function bindings. 

 

val uncool = __cool (Y cool)______________________ 

 


