
CSE 341, Autumn 2019, Assignment 2
Due: Monday October 14, 11:00PM

Important Introduction:

In this homework, we will work with JSON data in SML. We will manipulate it, print it, and (optionally, as
a challenge problem) parse it. We will also play with some real data.

You need to download a .zip file containing several files from the course website, but the only files you should
edit are hw2.sml, hw2tests.sml, and (optionally) hw2challenge.sml.

Your solutions must use pattern-matching. You may not use the functions null, hd, tl, isSome, or valOf,
nor may you use anything containing a # character or features not used in class (such as mutation). Note
that list order does not matter unless specifically stated in the problem.

This homework is more difficult than Homework 1. There are 19 required problems and 12 challenge prob-
lems, though several (both required and challenge) require just one line of code and none require more than
25 lines of code.

JSON is a human-readable data serialization format, originally inspired by Javascript’s Object Notation.
JSON is commonly used to represent data, for example Seattle Police Department crime report data near
the U-district used in this assignment.

No previous experience with JSON is expected or needed, but if you are curious or confused, the ultimate
reference is at https://tools.ietf.org/html/rfc7159. We will make some modest simplifying assump-
tions about JSON. Therefore, we will not quite be RFC compliant, but we will be close, and it wouldn’t be
too hard to get there.

A JSON value is one of seven things:
1. a number (floating point, e.g., 3.14 or -0.2)
2. a string (e.g., "hello")
3. false
4. true
5. null
6. an array of JSON values, written between square brackets and commas (e.g., [1, "world", null])
7. an “object,” which is a sequence of field/value pairs

• a field is always a string literal (e.g., "foo")

• a value is any JSON value

• objects are written with curly braces, commas, and colons, e.g.,
{ "foo" : 3.14, "bar" : [1, "world", null], "ok" : true }

However, our ML code will not use this concrete JSON notation, but rather use this datatype binding to
represent JSON values:

datatype json =

Num of real

| String of string

| False

| True

| Null

| Array of json list

| Object of (string * json) list

Remember that for any problem, if a type is required, then a more general type is acceptable provided your
code is correct.

1

https://tools.ietf.org/html/rfc7159


About the data files:

The crime-data files are needed only for problems 10–15, but you may find them useful for testing in other
places as well. In case you are curious, the data is real and comes from the Seattle Police Department, it
was originally retrieved via Socrata (www.socrata.com), but may no longer be available. For use in this
assignment, we have selected all records in the dataset that took place within 1km of the Paul G. Allen
Center for Computer Science & Engineering. The resulting data can be found in JSON format in the file
complete police.json.

Since that file contains over 10000 records, we have also included small, medium, and large subsets of
the data, containing 10, 100, and 1000 records, respectively, available in the files small police.json,
medium police.json, and large police.json.

Converting the textual representation of JSON data into the structured representation given by the SML
type json is the problem of parsing. Parsing JSON is an interesting problem, which we encourage you to
explore (it’s easier than you might think!) with the challenge problems.

To facilitate playing with the data without needing to parse it, we have included the pre-parsed data files
parsed small police.sml, parsed medium police.sml, and parsed large police.sml, each of which is
a valid SML file that binds a single variable name to a value of type json. Thus they can be loaded into the
REPL or other files with use function, as usual. Unfortunately, the complete dataset is too large for SML to
load in a reasonable amount of time when it is represented like this, so it is not available in the pre-parsed
format.

We will explore the data further below, but for now it suffices to say that it consists of a JSON array of
event records, each of which has several fields, such as the kind of event (e.g., shoplifting or noise complaint)
and the location (e.g., 4500 block of 15th avenue NE).

The Actual Problems

1. Write a function make_silly_json that takes an int i and returns a json. The result should represent
a JSON array of JSON objects where every object in the array has two fields, "n" and "b". Every
object’s "b" field should hold true (i.e., True). The first object in the array should have a "n" field
holding the JSON number i.0, the next object should have an "n" field holding ((i − 1).0 and so on
where the last object in the array has an "n" field holding 1.0. If i is 0, produce an array with 0
objects; assume i is not negative. Hints: We have provided a function int_to_real. You’ll want a
helper function that does most of the work.

2. Write a function assoc of type ’’a * (’’a * ’b) list -> ’b option that takes two arguments k

and xs. It should return SOME v1 if (k1,v1) is the pair in the list closest to the beginning of the list
for which k and k1 are equal. If there is no such pair, assoc returns NONE.

3. Write a function dot that takes a json (call it j) and a string (call it f) and returns a json option.
If j is an object that has a field named f, then return SOME v where v is the contents of that field. If
j is not an object or does not contain a field f, then return NONE.

4. Write a function one_fields that takes a json and returns a string list. If the argument is an
object, then return a list holding all of its field names (not field contents). Else return the empty list.
Use a tail-recursive, locally defined helper function. It is easiest to have the result have the strings in
reverse order from how they appear in the object and this reverse order is fine/expected.

5. Write a function no_repeats that takes a string list and returns a bool that is true if and only
if no string appears more than once in the input. Do not (!) use any explicit recursion. Rather, use
helper functions length (pre-defined in SML) and dedup (provided earlier in the file).

6. Write a function recursive_no_field_repeats that takes a json and returns a bool that is true
if and only if no object anywhere “inside” (arbitrarily nested) the json argument has repeated field
names. (Notice the proper answer for a json value like False is true. Also note that it is not relevant
that different objects may have field names in common.) In addition to using some of your previous

2



functions, you will want two locally defined helper functions for processing the elements of a JSON
array and the contents of a JSON object’s fields. By defining these helper functions locally, they can
call recursive_no_field_repeats in addition to calling themselves recursively.

7. Write a function count_occurrences of type string list * exn -> (string * int) list. If the
string list argument is sorted (in terms of the ordering implied by the strcmp function we provided
you), then the function should return a list where each string is paired with the number of times it
occurs. (The order in the output list does not matter.) If the list is not sorted, then raise the exn

argument. Your implementation should make a single pass over the string list argument, primarily
using a tail-recursive helper function. You will want the helper function to take a few arguments,
including the “current” string and its “current” count.

8. Write a function string_values_for_field of type string * (json list) -> string list (the
parentheses in this type are optional, so the REPL won’t print them). For any object in the json list

that has a field equal to the string and has contents that are a JSON string (e.g., String "hi") put
the contents string (e.g., "hi") in the output list (order does not matter; the output should have
duplicates when appropriate). Assume no single object has repeated field names.

9. Write a function filter_field_value of type string * string * json list -> json list. The
output should be a subset of the third argument, containing exactly those elements of the input list
that have a field with name equal to the first string argument and that field’s contents are a JSON
string equal to the second string argument.

The next six problems have you create variable bindings. Use either histogram_for_field or filter_field_value
as appropriate for analyzing the data in large_incident_reports_list — none of these problems require
very many lines of code.

10. Bind to the variable large_event_clearance_description_histogram a histogram (using
histogram_for_field) of the objects in large_incident_reports_list based on the
"event_clearance_description" field.

11. Bind to the variable large_hundred_block_location_histogram a histogram (using
histogram_for_field) of the objects in large_incident_reports_list based on the
"hundred_block_location" field.

12. Bind to the variable forty_third_and_the_ave_reports a json list containing the elements of
large_incident_reports_list whose "hundred_block_location" field contains the JSON string
"43XX BLOCK OF UNIVERSITY WAY NE".

13. Bind to the variable forty_third_and_the_ave_event_clearance_description_histogram a his-
togram based on the "event_clearance_description" field (like in problem 10), but considering only
the objects whose "hundred_block_location" field contains "43XX BLOCK OF UNIVERSITY WAY NE"

(as in problem 12).

14. Bind to the variable nineteenth_and_forty_fifth_reports a json list containing the elements
of large_incident_reports_list whose "hundred_block_location" field contains the JSON string
"45XX BLOCK OF 19TH AVE NE".

15. Bind to the variable nineteenth_and_forty_fifth_event_clearance_description_histogram a
histogram based on the "event_clearance_description" field (like in problem 10), but considering
only the objects whose "hundred_block_location" field contains "45XX BLOCK OF 19TH AVE NE" (as
in problem 14).

3



In the next four problems we will convert from json to string, the key step in printing JSON values.

16. Write a function concat_with that takes a separator string and a list of strings, and returns the string
that consists of all the strings in the list concatenated together, separated by the separator. The
separator should be only between elements, not at the beginning or end. Use ML’s ^ operator for
concatenation (e.g., "hello" ^ "world" evaluates to "helloworld").

17. Write a function quote_string that takes a string and returns a string that is the same except
there is an additional " character at the beginning and end.

18. Write a function real_to_string_for_json that takes a real and returns a string. You can’t quite
just use the real_to_string function we provided because in ML negative numbers start with ~, but
we want the more common - character. But we also provided real_abs.

19. Write a function json_to_string that converts a json into the proper string encoding in terms of the
syntax described on the first page of this assignment. The three previous problems are all helpful, but
you will also want local helper functions for processing arrays and objects (hint: in both cases, create
a string list that you then pass to concat_with).

The remaining problems are challenge problems that build to a parser for JSON. They are described in
hw2challenge.sml.

Summary

Evaluating a correct homework solution should generate these bindings or more general types in addition to
the bindings from the code provided to you.

val make_silly_json = fn : int -> json

val assoc = fn : ’’a * (’’a * ’b) list -> ’b option

val dot = fn : json * string -> json option

val one_fields = fn : json -> string list

val no_repeats = fn : string list -> bool

val recursive_no_field_repeats = fn : json -> bool

val count_occurrences = fn : string list * exn -> (string * int) list

val string_values_for_field = fn : string * json list -> string list

val filter_field_value = fn : string * string * json list -> json list

val large_event_clearance_description_histogram = (*...*) : (string * int) list

val large_hundred_block_location_histogram = (*...*) : (string * int) list

val forty_third_and_the_ave_reports = (*...*) : json list

val forty_third_and_the_ave_event_clearance_description_histogram =

(*...*) : (string * int) list

val nineteenth_and_forty_fifth_reports = (*...*) : json list

val nineteenth_and_forty_fifth_event_clearance_description_histogram =

(*...*) : (string * int) list

val concat_with = fn : string * string list -> string

val quote_string = fn : string -> string

val real_to_string_for_json = fn : real -> string

val json_to_string = fn : json -> string

Of course, generating these bindings does not guarantee that your solutions are correct. Test your functions:
Put your testing code in a separate file. We will not grade it, but you must turn it in.

Assessment

Your solutions should be correct, in good style, and use only features we have used in class.

Turn-in Instructions

• Put all your solutions in one file, hw2.sml, except put work on the challenge problems in hw2challenge.sml.
Put tests in hw2tests.sml.

• Follow the link on the course website (homework section) for the web-form for submitting your files.

4


