
7/8/2019

1

CSE341: Programming Languages

Lecture 5
More Datatypes and Pattern-Matching

Brett Wortzman

Summer 2019

Slides originally created by Dan Grossman

Useful examples

Let’s fix the fact that our only example datatype so far was silly…

• Enumerations, including carrying other data

• Alternate ways of identifying real-world things/people

Spring 2019 2CSE341: Programming Languages

datatype suit = Club | Diamond | Heart | Spade
datatype card_value = Jack | Queen | King

| Ace | Num of int

datatype id = StudentNum of int
| Name of string

* (string option)
* string

Don’t do this

Unfortunately, bad training and languages that make one-of types
inconvenient lead to common bad style where each-of types are
used where one-of types are the right tool

• Approach gives up all the benefits of the language enforcing
every value is one variant, you don’t forget branches, etc.

• And makes it less clear what you are doing

Spring 2019 3CSE341: Programming Languages

(* use the studen_num and ignore other
fields unless the student_num is ~1 *)

{ student_num : int,
first : string,
middle : string option,
last : string }

That said…

But if instead the point is that every “person” in your program has a
name and maybe a student number, then each-of is the way to go:

Spring 2019 4CSE341: Programming Languages

{ student_num : int option,
first : string,
middle : string option,
last : string }

Expression Trees
A more exciting (?) example of a datatype, using self-reference

An expression in ML of type exp:

How to picture the resulting value in your head:

Spring 2019 5CSE341: Programming Languages

datatype exp = Constant of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

Add (Constant (10+9), Negate (Constant 4))

Add

Constant

19

Negate

Constant

4

Recursion

Not surprising:

Functions over recursive datatypes are usually recursive

Spring 2019 6CSE341: Programming Languages

fun eval e =
case e of

Constant i => i
| Negate e2 => ~ (eval e2)
| Add(e1,e2) => (eval e1) + (eval e2)
| Multiply(e1,e2) => (eval e1) * (eval e2)

7/8/2019

2

Putting it together

Let’s define max_constant : exp -> int

Good example of combining several topics as we program:

– Case expressions

– Local helper functions

– Avoiding repeated recursion

– Simpler solution by using library functions

See the .sml file…

Spring 2019 7CSE341: Programming Languages

datatype exp = Constant of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp

Careful definitions

When a language construct is “new and strange,” there is more
reason to define the evaluation rules precisely…

… so let’s review datatype bindings and case expressions “so far”

– Extensions to come but won’t invalidate the “so far”

Spring 2019 8CSE341: Programming Languages

Datatype bindings

Adds type t and constructors Ci of type ti->t

– Ci v is a value, i.e., the result “includes the tag”

Omit “of t” for constructors that are just tags, no underlying data

– Such a Ci is a value of type t

Given an expression of type t, use case expressions to:

– See which variant (tag) it has

– Extract underlying data once you know which variant

Spring 2019 9CSE341: Programming Languages

datatype t = C1 of t1 | C2 of t2 | … | Cn of tn

Datatype bindings

• As usual, can use a case expressions anywhere an expression goes

– Does not need to be whole function body, but often is

• Evaluate e to a value, call it v

• If pi is the first pattern to match v, then result is evaluation of ei in
environment “extended by the match”

• Pattern Ci(x1,…,xn) matches value Ci(v1,…,vn) and extends
the environment with x1 to v1 … xn to vn

– For “no data” constructors, pattern Ci matches value Ci

Spring 2019 10CSE341: Programming Languages

case e of p1 => e1 | p2 => e2 | … | pn => en

Recursive datatypes

Datatype bindings can describe recursive structures

– Have seen arithmetic expressions

– Now, linked lists:

Spring 2019 11CSE341: Programming Languages

datatype my_int_list = Empty
| Cons of int * my_int_list

val x = Cons(4,Cons(23,Cons(2008,Empty)))

fun append_my_list (xs,ys) =
case xs of

Empty => ys
| Cons(x,xs’) => Cons(x, append_my_list(xs’,ys))

Options are datatypes

Options are just a predefined datatype binding
– NONE and SOME are constructors, not just functions

– So use pattern-matching not isSome and valOf

Spring 2019 12CSE341: Programming Languages

fun inc_or_zero intoption =
case intoption of

NONE => 0
| SOME i => i+1

7/8/2019

3

Lists are datatypes

Do not use hd, tl, or null either

– [] and :: are constructors too

– (strange syntax, particularly infix)

Spring 2019 13CSE341: Programming Languages

fun sum_list xs =
case xs of

[] => 0
| x::xs’ => x + sum_list xs’

fun append (xs,ys) =
case xs of

[] => ys
| x::xs’ => x :: append (xs’,ys)

Why pattern-matching

• Pattern-matching is better for options and lists for the same
reasons as for all datatypes

– No missing cases, no exceptions for wrong variant, etc.

• We just learned the other way first for pedagogy
– Do not use isSome, valOf, null, hd, tl on Homework 2

• So why are null, tl, etc. predefined?

– For passing as arguments to other functions (next week)

– Because sometimes they are convenient

– But not a big deal: could define them yourself

Spring 2019 14CSE341: Programming Languages

Excitement ahead…

Learn some deep truths about “what is really going on”

– Using much more syntactic sugar than we realized

• Every val-binding and function-binding uses pattern-matching

• Every function in ML takes exactly one argument

First need to extend our definition of pattern-matching…

Spring 2019 15CSE341: Programming Languages

Each-of types

So far have used pattern-matching for one of types because we
needed a way to access the values

Pattern matching also works for records and tuples:
– The pattern (x1,…,xn)

matches the tuple value (v1,…,vn)

– The pattern {f1=x1, …, fn=xn}

matches the record value {f1=v1, …, fn=vn}

(and fields can be reordered)

Spring 2019 16CSE341: Programming Languages

Example

This is poor style, but based on what I told you so far, the only way
to use patterns

– Works but poor style to have one-branch cases

Spring 2019 17CSE341: Programming Languages

fun sum_triple triple =
case triple of

(x, y, z) => x + y + z

fun full_name r =
case r of

{first=x, middle=y, last=z} =>
x ^ " " ^ y ^ " " ^ z

Val-binding patterns

• New feature: A val-binding can use a pattern, not just a variable

– (Turns out variables are just one kind of pattern, so we just
told you a half-truth in Lecture 1)

• Great for getting (all) pieces out of an each-of type

– Can also get only parts out (not shown here)

• Usually poor style to put a constructor pattern in a val-binding

– Tests for the one variant and raises an exception if a
different one is there (like hd, tl, and valOf)

Spring 2019 18CSE341: Programming Languages

val p = e

7/8/2019

4

Better example

This is okay style

– Though we will improve it again next

– Semantically identical to one-branch case expressions

Spring 2019 19CSE341: Programming Languages

fun sum_triple triple =
let val (x, y, z) = triple
in

x + y + z
end

fun full_name r =
let val {first=x, middle=y, last=z} = r
in

x ^ " " ^ y ^ " " ^ z
end

Function-argument patterns

A function argument can also be a pattern

– Match against the argument in a function call

Examples (great style!):

Spring 2019 20CSE341: Programming Languages

fun f p = e

fun sum_triple (x, y, z) =
x + y + z

fun full_name {first=x, middle=y, last=z} =
x ^ " " ^ y ^ " " ^ z

A new way to go

• For Homework 2:
– Do not use the # character

– Do not need to write down any explicit types

Spring 2019 21CSE341: Programming Languages

Hmm

A function that takes one triple of type int*int*int and returns
an int that is their sum:

Spring 2019 22CSE341: Programming Languages

A function that takes three int arguments and returns
an int that is their sum

fun sum_triple (x, y, z) =
x + y + z

fun sum_triple (x, y, z) =
x + y + z

See the difference? (Me neither.) 

The truth about functions

• In ML, every function takes exactly one argument (*)

• What we call multi-argument functions are just functions taking
one tuple argument, implemented with a tuple pattern in the
function binding

– Elegant and flexible language design

• Enables cute and useful things you cannot do in Java, e.g.,

* “Zero arguments” is the unit pattern () matching the unit value ()

Spring 2019 23CSE341: Programming Languages

fun rotate_left (x, y, z) = (y, z, x)
fun rotate_right t = rotate_left (rotate_left t)

