
Morphic

• A highly unusual graphical toolkit!
• Originates in the Self project at Sun

– Self: a prototype-based programming language
– No classes---objects inherit/instantiate by “cloning”

• Self design strongly reflected in Morphic
– Can create Morphic objects, add properties & behavior

without defining classes
– All Morphic objects have uniform, “concrete” feel---

e.g., “shadows” when dragging

Morphic, Smalltalk-style

• Smalltalk is class-based, so Squeak
Morphic generates classes “under the hood”

• You can also use Morphic in traditional
(non-prototype-based) style.

• This tutorial will use a traditional class-
based programming style.

Squeak Morphic programming

• Goal: to get you coding something
“interesting” as quickly as possible.

• Steps:
– (Enter a Morphic world)
1. Define & instantiate your own Morph
2. Customizing your Morph
3. Animating Morphs
4. Toolkits and hierarchical composition

Morphs in the class browser

• All Morphic objects are instances of
subclasses of Morph.

• Squeak looks for Morph subclasses in
class categories starting with Morphic-

• Morphs found in these packages will be
shown in the new morph... submenu

1. Defining your own Morph
• You can add Morph subclasses anywhere.
• But, you will probably want to create a new class

category for your Morphs, e.g. Morphic-Keunwoo
• In this category, define a new subclass of Morph:

You’re done! But...

• Your new morph category, and morph, should appear in the new
morph... submenu.

• You inherit all the default Morph behaviors. (The default
rendering is a blue rectangle.)

• Default behaviors are nice, but they’re not yours...
• (Important: See various online tutorials for information on halos,

direct manipulation of Morphs, etc.)

Alternate way to show instances

1. Open a workspace
2. Create an instance with new
3. Send the openInWorld message

What’s the “world”?

• The global namespace* contains a variable named
World.

• When you enter a Morphic “world”, World is set
to point to the current “world”

• When you send the openInWorld message to a
Morph, it gets the current World and adds itself.

* For the curious, the global namespace is a dictionary named Smalltalk. Do
Smalltalk inspect in any Workspace to get a look at it.

Okay, but what’s a “world”?

Q: What’s a “world”?
A: An instance of a subclass of PasteUpMorph

Q: What’s a PasteUpMorph?
A: A Morph where you can drop other morphs, and

they stick---think of it as a “desktop-like” morph.

2. Customizing your Morph

• Morphs are almost endlessly flexible
• For brevity, we will begin by customizing

only two aspects:
– Appearance (“look”)
– Response to mouse input (“feel”)

2(a). Morph drawing [2]
• Like most graphics toolkits, components paint themselves

onto a graphics context provided by the system.
• In Squeak, graphics contexts are instances of Canvas
• Canvas defines many methods for drawing...

Graphical environments:
A question

Q: When should components paint themselves?
A: Often. It’s complicated...

– When created
– Whenever onscreen area is covered, then uncovered
– Whenever it receives input that changes its state

• (e.g., pressed button must change appearance)

– Whenever the state of the thing it represents changes
• (e.g., an animation of a physics simulation)

– ...and more...

2(a) Drawing components [2]
• Therefore, components draw when asked by the

system, onto the Canvas provided.
• When object needs a repaint, it will be sent the

drawOn: message, which takes a Canvas:

2(a) Customized drawing [3]
• To customize drawing, simply

override the drawOn: message

Aside: a word about geometry

• Two natural screen coordinate systems:
– “Text-like”: top left corner is (0, 0)

• Y coordinate increases as you go down screen

– “Math-like”: bottom left corner is (0, 0)
• Y coordinate increases as you go up screen

• Morphic has both…
– x/x: and y/y: methods use math-like
– position/position: methods use text-like

2(b) Custom event handling [1]

• Input events are similar to painting events
• To define your own event action, override a

message that handles the event, e.g. mouseDown:

2(b) Custom event handling [2]

• An example of handling mouseDown event:

• However, this is not enough...

2(b) Custom event handling [3]

• Squeak does not want to dispatch all events to
every Morph in the world (inefficient)

• To register interest in an event, you may have to
override a handlesXXX: method, e.g.:

More about events...

• Event-driven programming is a big idea
• Good graphical toolkits provide a rich interface to

send/receive/register interest in various events.
• Examine the “event handling” method category in

the Morph base class for event handling methods.
• MorphicEvent (in class category Morphic-

Support) is the class of the “evt” parameter
received by the event handling methods.

3. Animating Morphs

• Morph defines a bunch of methods related to
time-varying properties. Among the most
important:
– step
– stepTime
– startStepping
– stopStepping

• These have the intuitively obvious meanings...
• As usual, override to make stuff happen

4. Hierarchical composition

• Most toolkits have a notion of “containers”,
embodied in a class.

• Container is itself usually a subclass of the
base Component class, so that Containers
can recursively contain Containers.
– (“Composite” design pattern – Gamma et al.)

• In this fashion, arbitrarily complex trees of
components can be created.

Hierarchical composition in
Morphic

• Morphic allows all Morphs to be containers
– (some are better suited than others)

• Morph method addMorph: can be used to add
any morph to any other.

• Note that addMorph alone does not constrain the
position of submorphs!
– A submorph may live outside its parent’s physical area.
– But, when this happens, painting often malfunctions

Composition, ct’d

• If you create your own specialized container
(e.g., BouncingAtomsMorph in Morphic-
Demos), you probably should not call
addMorph directly

• Instead, create your own method, with a
logical name, that calls self addMorph
– (e.g., addAtom:)

Composition and delegation

• Adding components to containers allows the
container to delegate responsibility for certain
actions to its child objects
– BouncingAtomsMorph need not explicitly define

behavior of all atoms

• A fundamental principle of OOD: use hierarchical
composition to build objects out of other objects.

