University of Washington

Today

m Program optimization
®= Removing unnecessary procedure calls
= Code motion/precomputation
= Strength reduction
® Sharing of common subexpressions
® Optimization blocker: Procedure calls
= Optimization blocker: Memory aliasing

CSE351 - Autumn 2010 1

I T
Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s (giga floating point operations per second)
50

a5
——

—0

Best code

This code is
not obviously stupid

Triple loop

0 1,000 2,000 3,000 4,000 5,000 6,000 7,(;00 8,0'00 9,I;00
matrix size

m Standard desktop computer, compiler, using optimization flags

m Both implementations have exactly the same operations count (2n3)

m What is going on?

CSE351 - Autumn 2010 2

University of Washington

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
40 —=
35
30
- Multiple threads: 4x (maybe towards end of this course)
20
15
10 .
u Vector instructions: 4x (not in this course)

Memory hierarchy and other optimizations: 20

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

m Effect: more instruction level parallelism, better register use,
less L1/L2 cache misses, less TLB misses

CSE351 - Autumn 2010 3

University of Washington

Harsh Reality

m There’s more to runtime performance than asymptotic
complexity

m One can easily loose 10x, 100x in runtime or even more

m What matters:

= Constants (100n and 5n are both O(n), but)
Coding style (unnecessary procedure calls, unrolling, reordering, ...)
Algorithm structure (locality, instruction level parallelism, ...)

Data representation (complicated structs or simple arrays)

CSE351 - Autumn 2010 4

University of Washington

Harsh Reality

m Must optimize at multiple levels:
= Algorithm
= Data representations
® Procedures
" |Loops

m Must understand system to optimize performance
®= How programs are compiled and executed
= Execution units, memory hierarchy
®" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

CSE351 - Autumn 2010 5

University of Washington

Optimizing Compilers

m Use optimization flags, default is no optimization (-00)!
m Good choices for gcc: -02, -03, -march=xxx, -m64
m Try different flags and maybe different compilers

CSE351 - Autumn 2010 6

University of Washington

Example

double a[4][4];
double b[4][4];
double c[4][4]; # set to zero

/* Multiply 4 x 4 matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;

for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)

c[i*4+j] += a[i*4 + k]*b[k*4 + j];

m Compiled without flags:
~1300 cycles

m Compiled with -03 -m64 -march=... —-fno-tree-vectorize
~150 cycles

m Core 2 Duo, 2.66 GHz

CSE351 - Autumn 2010 7

University of Washington

Optimizing Compilers

m Compilers are good at: mapping program to machine
= register allocation
= code selection and ordering (scheduling)
® dead code elimination
= eliminating minor inefficiencies
m Compilers are not good at: improving asymptotic efficiency
® up to programmer to select best overall algorithm
® big-O savings are (often) more important than constant factors
= but constant factors also matter
m Compilers are not good at: overcoming “optimization
blockers”
= potential memory aliasing
® potential procedure side-effects

CSE351 - Autumn 2010 8

Limitations of Optimizing Compilers

m If in doubt, the compiler is conservative

m Operate under fundamental constraints
®= Must not change program behavior under any possible condition

= Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

m Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles
® e.g., data ranges may be more limited than variable types suggest
m Most analysis is performed only within procedures
= Whole-program analysis is too expensive in most cases
m Most analysis is based only on static information

® Compiler has difficulty anticipating run-time inputs

CSE351 - Autumn 2010 9

University of Washington

Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{ len 0o 1 len-1

int len; |
double *data; data | |°.°°°° | |

} vec;

/* retrieve vector element and store at val */
int get vec_element(vec *v, int idx, double *val)
{
if (idx < 0 || idx >= v->len)
return 0;
*val = v->data[idx];
return 1;

CSE351 - Autumn 2010 10

University of Washington

Example: Summing Vector Elements

double get vec_element(vec *v, int idx,
double *val)
{ Bound check
return 0; in sum_elements
*val = v->data[idx]; Whv?
return 1; y:
}
/* sum elements of vector */
double sum elements(vec *v, double *res) Overhead for every fp +:
{ * One fct call
Liis Lf * One<
n = v->len; « One >=
*res = 0.0; €>=
L[]
double val; One ||
* One memory variable
for (1 = 0; i < n; i++) { access
get_vec_element (v, i, &val);
*res += val; Slowdown:
} probably 10x or more
return res;
CSE351L Autumn 2010 11

Removing Procedure Call

/* sum elements of vector */
double sum elements(vec *v, double *res)

{

int i;

n = v->len;
*res = 0.0;
double val;

for (i = 0; i < n; i++) {
get _vec_element (v, i, &val);
*res += val;
}
return res;

}

/* sum elements of vector */
double sum_elements(vec *v, double *res)
{

int i;

n = v->len;

*res = 0.0;

double *data = get vec_start(v);

for (i = 0; 1 < n; i++)
*res += datal[i];
return res;

CSE351 {Autumn 2010 -

University of Washington

Removing Procedure Calls

m Procedure calls can be very expensive
m Bounds checking can be very expensive
m Abstract data types can easily lead to inefficiencies

= Usually avoided in superfast numerical library functions
m Watch your innermost loop!

m Get a feel for overhead versus actual computation being
performed

CSE351 - Autumn 2010 13

University of Washington

Code Motion

m Reduce frequency with which computation is performed
= |f it will always produce same result

= Especially moving code out of loop

m Sometimes also called pre-computation

void copy_ row(double *a, double *b,
int i, int n)
{
int j;
for (j = 0; j < n; j++)
a[n*i+j] = b[]jl;

int j;

int ni

for (3 < n; jt++)
a[ni+j] = b[]jl;

n*i;
0; 3

CSE351 - Autumn 2010 14

University of Washington

CSE351

CSE351

Compiler-Generated Code Motion

void copy row(double *a, double *b,
int i, int n)

{

int j;
int ni = n*i;

int j; double *rowp = a+ni;
for (j = 0; j < n; j++) for (j = 0; j < n; j++)
a[n*i+j] = b[]j]; {*rowp = b[j]; rowp++;}
}
copy_row:
xorl $r8d, %r8d # =0
cmpq $rcx, %r8 # Jj:n
jge .L7 # if >= goto done
movq $rcx, %rax # n
imulqg %rdx, %$rax # n*i outside of inner loop
leaq ($rdi,%rax,8), %rdx # rowp = A + n*i*8
.L5: # loop:
movq (%rsi,%r8,8), %rax # t =Db[]j]
incq %r8 # J++
movq $rax, (%rdx) # *rowp = t
addgq $8, %rdx # rowp++
cmpqgq $rcx, %r8 # J:n
jl .L5 # if < goto loop
.L7: # done:
rep ; ret # return

—AutormT 2016

Strength Reduction

University of Washington

m Replace costly operation with simpler one

m Example: Shift/add instead of multiply or divide

16*x - X << 4

®= Depends on cost of multiply or divide instruction

® On Pentium IV, integer multiply requires 10 CPU cycles

m Example: Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

- Autumn 2010

int ni = 0;
for (1 = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + jl = b[j];
ni += n;

}

University of Washington

Share Common Subexpressions

m Reuse portions of expressions

m Compilers often not very sophisticated in exploiting

arithmetic properties

3 mults: i*n, (i-1)*n, (i+1)*n

/* Sum neighbors of i,j */
up = val[(i-1)*n + j 1]
down = val[(i+l)*n + j];
left = wval[i*n + j-11;
right = val[i*n + j+1];

sum = up + down + left + right;

leaq 1(%rsi), %rax # i+l

leaq -1(%rsi), %r8 # i-1
imulg $%rcx, %$rsi # i*n
imulg %rcx, %rax # (i+l)*n
imulg $%rcx, %r8 # (i-1)*n
addq $rdx, %rsi # i*n+j
addq $rdx, %rax # (i+1l) *n+j
addq $rdx, %r8 # (i-1) *n+j

CSE351 - Autumn 2010

1 mult: i*n

int inj = i*n + j;

up = val[inj - n];

down = wval[inj + n];

left = wvall[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;
imulqg $rcx, %rsi # i*n

addgq $rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subqg %rcx, %rax # i*n+j-n
leaq ($rsi,%rcx), %$rcx # i*n+j+n

University of Washington

Optimization Blocker: Procedure Calls

m Procedure to convert string to lower case

void lower (char *s)
{
int i;
for (i = 0; i < strlen(s);
if (s[i] >= 'A’

s[i] —_ (lAl —_ lal);

&& s[i] <=

i++)
lzl)

CSE351 - Autumn 2010

University of Washington

Performance

m Time quadruples when double string length
m Quadratic performance

CPU Seconds

1000
100
10
1
0.1
0.01 I I
0.001 I
0.0001 W= . : ‘ :
O o S Y4 v e X v e e X
N — — (@\] <t o0 o] (@] <t o0 O

String Length

CSE351 - Autumn 2010

Why is That?

void lower (char *s)
{
int i;
for (1 = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
S[i] —_ (IAI - lal),.

}

m String length is called in every iteration!
®* And strlenis O(n), so lower is O(n?)

/* A version of strlen */
size_t strlen(char *s)
{
size t length = 0;
while (*s !'= '\0') {
s++;
length++;
}

return length;

}

CSE351 - Autumn 2010

20

University of Washington

Improving Performance

void lower (char *s)
{
int i;
for (1 = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
S[i] —_ (IAI - vav);

}

void lower (char *s)
{
int i;
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A' - 'a');

m Move call to strlen outside of loop
m Since result does not change from one iteration to another
m Form of code motion/precomputation

CSE351 - Autumn 2010 21

University of Washington

Performance

m Lower2: Time doubles when double string length
m Linear performance

CPU Seconds
1000
100
10 lowerl M lower2 -
1 I
0.1 —
0.01 L
0.001
0.0001 r t L r
0.00001 | — R
0.000001 J‘ r t r r ‘
e 08 ¥ X ¥ % ¥ 5 ¥ £ ©

String Length

CSE351 - Autumn 2010 22

University of Washington

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?
® Procedure may have side effects

® Function may not return same value for given arguments
= Could depend on other parts of global state
= Procedure lower could interact with strlen

m Compiler usually treats procedure call as a black box that cannot
be analyzed
= Consequence: conservative in optimizations

m Remedies:

int lencnt = 0;
size_t strlen(char *s)
= Do your own code motion {

® |nline the function if possible

size_t length = 0;
while (*s != '\0') {
s++; length++;

}
lencnt += length;
return length;

CSE351 - Autumn 2010 23

University of Washington

Optimization Blocker: Memory Aliasing

// add twice the value stored at yp to the value stored at xp

void twiddlel (int *xp, int *yp)
{

*Xp += *yp;

*Xp += *yp;
}

void twiddle2 (int *xp, int *yp)
{

*xp += 2% (*yp) ;
}

m twiddlel appears to be less efficient
® 6 memory references: two reads each of *yp and *xp, two writes of *xp

m twiddle2 appears to be more efficient
= 3 memory references: read *yp, read *xp, write *xp

m Can a compiler come up with twiddle2 if given twiddlel?

CSE351 - Autumn 2010 24

University of Washington

Optimization Blocker: Memory Aliasing

// add twice the value stored at yp to the value stored at xp
// *xp = *xp + 2 * *yp;

void twiddlel (int *xp, int *yp)
{

*Xp += *yp;

*Xp += *yp;
}

void twiddle2 (int *xp, int *yp)
{

*Xp += 2% (*yp) ;
}

m But what if xp == yp?
= twiddlel quadruples value at xp
= twiddle2 triples value at xp
m Because of this ‘aliasing’, compiler does not optimize twiddlel
= Would lead to different result
= Assume twiddlel is programmer’s intent

CSE351 - Autumn 2010 25

University of Washington

Optimization Blocker: Memory Aliasing

X 1000;
v 3000;
*q = y;
*P = x;
return *q;

m What is the return value?
m Two cases:

® qand p are different addresses
® g and p are aliases for the same address

CSE351 - Autumn 2010 26

University of Washington

Optimization Blocker: Memory Aliasing

m Memory aliasing: Two different memory references write
to the same location
m Can happen easily in C
= Since allowed to do address arithmetic

® Direct access to storage structures

m Hard to analyze = compiler cannot figure it out
®= Hence the compiler is conservative

CSE351 - Autumn 2010 27

University of Washington

A Solution to Aliasing

m Apply a programming style consistently
®= Copy values for memory variables into local variables
® Then assign local variables to final destinations

templ = y;
temp2 = x;
*q = templ;
*p = temp2;
return templ;

CSE351 - Autumn 2010 28

University of Washington

A Final Thought

m Source code optimization can muddle/destroy code clarity
and program structure

= Certain optimizations are pretty easy and not too messy, so do them —
e.g, move strlen(s) outside the loop

= Butit’s not always that simple...
m Worth doing when it actually buys you something

= Use profiling tools to find out where the code is spending its time
(it’s often not where you think!)
(Alas, we probably won'’t see gprof and other tools in this course)

“Premature optimization is the root of all evil”
Donald Knuth

CSE351 - Autumn 2010 29

