University of Washington

Today

m Memory hierarchy, caches, locality
m Cache organization
m Program optimizations that consider caches

CSE351 - Autumn 2010 1

University of Washington

Problem: Processor-Memory Bottleneck

Processor performance

doubled about .
every 18 months Bus bandwidth
evolved much slower
Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency

100 cycles

Solution: Caches

CSE351 - Autumn 2010 2

University of Washington

Cache

m English definition: a hidden storage space for provisions,
weapons, and/or treasures

m CSE Definition: computer memory with short access time
used for the storage of frequently or recently used
instructions or data (i-cache and d-cache)

more generally,

used to optimize data transfers between system elements
with different characteristics (network interface cache, 1/0
cache, etc.)

CSE351 - Autumn 2010 3

University of Washington

General Cache Mechanics

Smaller, faster, more expensive
Cache I 4 ” 9 " 10 ” 3 | memory caches a subset of
the blocks

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

o L1 Jl 2 |3

N

| |
I |
L8 I[o J[20 || 11]
| |

[)

Memory

12 || 13 |[14 || 15

CSE351 - Autumn 2010 4

University of Washington

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache |[8 |[9 |[1a J[3 || .

Memory (Lo [1 [2 || 3 |
Lall s [6 [7|
L8 I[9 [10 J[12 |
[12 || 13 || 14 || 15 |
cecceccscccscssccce

CSE351 - Autumn 2010 5

University of Washington

General Cache Concepts: Miss

Request: 12 Data in block b is needed

Block b is not in cache:

Cache || 8 || 122 || 14 |[3 |

Miss!
_ Block b is fetched from
Request: 12 memory
Block b is stored in cache
Memory I 0 ” 1 ” 2 ” 3 | * Placement policy:
| 4 ” 5 ” 6 ” 7 | determines where b goes
* Replacement policy:
I 8 ” 2 ” 10 ” 11 | determines which block
22 || 13 [14 || 15 | gets evicted (victim)
0 000000000 0C0OCOGEOGEOGOOS

CSE351 - Autumn 2010 6

University of Washington

Cache Performance Metrics

m Miss Rate

® Fraction of memory references not found in cache (misses / accesses)

=1-hit rate
Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time

= Time to deliver a line in the cache to the processor

= includes time to determine whether the line is in the cache
= Typical numbers:

= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty

= Additional time required because of a miss

= typically 50-200 cycles for main memory (trend: increasing!)

CSE351 - Autumn 2010

University of Washington

Lets think about those numbers

m Huge difference between a hit and a miss

® Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?
= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

CSE351 - Autumn 2010

University of Washington

Types of Cache Misses

m Cold (compulsory) miss
= Qccurs on first access to a block
m Conflict miss

= Most hardware caches limit blocks to a small subset (sometimes just one)
of the available cache slots

= if one (e.g., block i must be placed in slot (i mod size)), direct-mapped
= if more than one, n-way set-associative (where n is a power of 2)

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

= e.g., referencing blocks 0, 8, 0, 8, ... would miss every time
m Capacity miss

®= QOccurs when the set of active cache blocks (the working set)
is larger than the cache (just won’t fit)

CSE351 - Autumn 2010

University of Washington

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: (,7

= Recently referenced items are likely [| | [block
to be referenced again in the near future

m Spatial locality:

® |tems with nearby addresses tend L1 | block
to be referenced close together in time

CSE351 - Autumn 2010

University of Washington

Example: Locality?

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

m Data:

®= Temporal: sum referenced in each iteration

= Spatial: array a[] accessed in stride-1 pattern
m Instructions:

= Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

m Being able to assess the locality of code is a crucial skill
for a programmer

CSE351 - Autumn 2010 11

University of Washington

Locality Example #1

int sum_array rows(int a[M][N])

{

int i, j, sum = 0; al0])[o] a[0][1] a[0][2] a[0][3]
al1][0] al1][1] a[1l[2] a[1][3]
for (i = 0; i < M; i++) al2][0] al2][1] al2][2] a[2][3]
for (§ = 0; j < N; j++)
sum += a[i] []];
return sum;

: a[0][0]
:af0][1]
:a[0][2]
:a[0][3]
: a[1][0]
a[1][1]
:a[1][2]
: a[1][3]
:a[2][0]
10: a[2][1]
11: a[2][2]
12: a[2][3]

00 NOUBHE WNR

©o

stride-1

CSE351 - Autumn 2010 12

University of Washington

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0; afo][o] a[o][1] a[o0][2] a[0][3]
a[1][o] a[1][1] a[1][2] a[1][3]
for (jJ = 0; j < N; j++) a[2][o] a[2][1] a[2][2] a[2](3]
for (i = 0; i < M; i++)
sum += a[i]l [j]/
return sum;

: a[0][0]
:a[1][0]
: a[2][0]
: a[0][1]
:a[1][1]
s a[2][1]
:a[0][2]
:a[1][2]
:a[2][2]
10: a[0][3]
11: a[1][3]
12: a[2][3]

00 NOU B WNR

©o

stride-N

CSE351 - Autumn 2010 13

University of Washington

Locality Example #3

int sum array 3d(int a[M] [N] [N])
{
int i, j, k, sum = 0;
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k][i][]]~
return sum;
}

m What is wrong with this code?
m How can it be fixed?

CSE351 - Autumn 2010 14

University of Washington

Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software systems:

® Faster storage technologies almost always cost more per byte and have
lower capacity

®= The gaps between memory technology speeds are widening
= True for: registers <> cache, cache <> DRAM, DRAM < disk, etc.
= Well-written programs tend to exhibit good locality

m These properties complement each other beautifully

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

CSE351 - Autumn 2010 15

University of Washington

An Example Memory Hierarchy

A
CPU registers hold words retrieved from L1 cache
L1: on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier L2: off-chip L2
er byte
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
Larger, main memory . .
slower (DRAM) Main memory holds disk blocks
’ retrieved from local disks
cheaper
per byte L4: local secondary storage
. Local disks hold files
(Iocal dISkS) retrieved from disks on
remote network servers
L5 remote secondary storage
) (distributed file systems, web servers)
v

CSE351 - Autumn 2010 16

University of Washington

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? I(-:\tyilr:e ?)/ Managed By
Registers 4-byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware+0S
Buffer cache Parts of files Main memory 100 | OS

Network cache Parts of files Local disk 10,000,000 | File system client
Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web server

CSE351 - Autumn 2010

Memory Hierarchy: Core 2 Duo

L1/L2 cache: 64 B blocks

CPU | Reg

Throughput: 16 B/cycle
3 cycles

Latency:

CSE351 - Autumn 2010

~4 MB

L1
I-cache

32 KB

L1
D-cache

L2
unified
cache

8 B/cycle
14 cycles

~4 GB
Main
Memory
2 B/cycle 1 B/30 cycles
100 cycles millions

University of Washington

~500 GB

Not drawn to scale

Disk

University of Washington

General Cache Organization (S, E, B)

E = 2¢ lines per set

- A ~N set
s —
| I ||:K
line
— — T —
S=Zssets< I II Ioooo:
(s [P m—
cache size:
E| wg | [0]1]2] [61] S x E x B data bytes
valid bit S~ —

~—
B = 2® bytes data block per cache line (the data)

CSE351 - Autumn 2010 19

University of Washington

CaChe Read * Locate set

* Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
f A ~ « Locate data starting

r at offset

I | o ool |
Address of word:
| | oo | | thits | sbits | bbits |
_ %’&f}
S = 2°sets 4 I | [ooee] | tag set block
index offset

\.

data begins at this offset

[\] [Cos] [o] a2 Toa]
— 7

valid bit

~—
B = 2® bytes data block per cache line (the data)

CSE351 - Autumn 2010 20

University of Washington

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

(|0 G GLLLLEGET| pddesetint
[] [] CLELLEGL] st
N M ol LG
L El tag_| [of1]23]a]s[6]7]

CSE351 - Autumn 2010 21

University of Washington

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
valid? + match: assume yes = hit |

| thits | 0..01 | 100 |
[\] e] [[:l2[:]+]7]

block offset

CSE351 - Autumn 2010 22

University of Washington

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
valid? + match: assume yes = hit |

| | thits | 0..01 | 100 |
[\] e] l2: o]]7]

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

CSE351 - Autumn 2010 23

University of Washington

Assume sum, i, j in registers

Exa m p I e (fO r E - 1) Address of an aligned element
of a: aa....aaxxxxyyyy000

int sum_array rows(double a[16][16]) Assume: cold (empty) cache

{

3 bits for set, 5 bits for byte

int i, §;
nt 1, J aa...aaxxx xyy yy000

double sum = 0;

for (i = 0; i < 16; i++) 007010203 a0ial1ia2i a3
for (§ = 0; j < 16; j++)
sum 4= ali] [§] ; 04105i06!0,7

return sum; 0,8:0,9:0,ai0,b

0,ci0,di0,e!0f

int sum array cols (double a[16][16]) 10411112113 SOHER [EH)
{ 1,4115i1,6!1,7

int i, j; 1,811,9!1,ai1b

double sum = 0;
/ lcildile!lf
for (j = 0; j < 16; j++) \ J \ J
for (i = 0; i < 16; i++)
sum += a[il[j]; 32B=4doubles 32B-=4doubles
return sum; 4 misses per row every access a miss
} 4*16 = 64 misses 16*16 = 256 misses

CSE351 - Autumn 2010 24

University of Washington

Example (forE=1

)

float dotprod(float x[8], float y[8])
{

float sum = 0;

int i;

for (i = 0; i < 8; i++)

sum += x[i]*y[i];

return sum;

}
¥[0]: x[1]; ¥[2]

if x and y have aligned
starting addresses,

e.g., &x[0] = 0, &y[0] = 128

¥[3] x[0]x[1]ix[2] i x[3]
x[5]} x[6]i x[7]} x[8]
if x and y have unaligned
starting addresses,
e.g., &x[0] =0, &y[0] = 144
y[01} y[1]; y[2]} yI3]
y[51} yI6l: y[71: y[8]

CSE351 - Autumn 2010

25

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

| tbits

| 0..01 | 100]

[v] [eee] [oa2]s]eTsT6]7]

[v] [Ceeg] [o]a2[3TaTsT6]7]

[v] [teg] [ofs[2]a]4]sTe]7]

[v] (g] [ola2]sTaTsT6]7]

[v] Ceee | [o[s]2]5 4 5]6]7]

[v] [ee] [ols[2]3]4]5Te]7]

[v] [Ceeg] [o]a2[sTeTsT6]7]

[v] [eeg | [oa2]3]eTsT6]7]

CSE351 - Autumn 2010

find set

26

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

| thits | 0..01 | 100]

compare both

valid? + | match: yes = hit

[v] Creg] [o[alz[3]alse]7]| [[x] Cree] [olalz[z] s e]7]| —

block offset

CSE351 - Autumn 2010 27

University of Washington

E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

| tbits | 0..01 | 100]

match both

valid? + | match: yes = hit

[v] [Ceee | [o[s]2]sTaTsTe7]f |[v] [eee] [of[2[s]a s e 7]| —
I

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

CSE351 - Autumn 2010 28

University of Washington

Example (for E = 2)

float dotprod(float x[8], float y[8])
{

float sum = 0;

int i;

sum += x[i]*y[i];
return sum;

if x and y have aligned x[0]#x[1]ix[2] i x[3]1] y[O] i y[1]iy[2]iy[3]

starting addresses, 710via1ivisiivieliyv7
e.g., &x{0] - 0, &y[0] - 128 x[4]4 x[5] x[6]} x[7] | y[4]} y[SIiyI6]}yI7]

still can fit both
because 2 lines in each set

CSE351 - Autumn 2010 29

University of Washington

Fully Set-Associative Caches (S=1)

m Alllines in one singleset,S=1

= E=C/B, where Cis total cache size
" S=1=(C/B)/E

m Direct-mapped caches have E=1
= S=(C/B)/E=C/B
m Tags are more expensive in associative caches
= Fully-associative cache, C / B tag comparators
= Direct-mapped cache, 1 tag comparator
® |n general, E-way set-associative caches, E tag comparators

m Tag size, assuming m address bits (m = 32 for IA32)
" m-log,S—log,B

CSE351 - Autumn 2010 30

University of Washington

Typical Memory Hierarchy (Intel Core i7)

CPU registers (optimized by complier)

L1: on-chip L1

8-way associative in Intel Core i7

Smaller, cache (SRAM)

faster,

costlier .

per byte L2: Oﬂ'Chlp L2 8-way associative in Intel Core i7
cache (SRAM)

Larger L3: Oﬁ-ChiR cache L3 shared 16-way associative in Intel Core i7

; ger, by multiple cores (SRAM)
slower,

cheaper L4: main memory
per byte (DRAM)
L5: local secondary storage
(local disks)
L6: remote secondary storage
18 (distributed file systems, web servers)

CSE351 - Autumn 2010

31

University of Washington

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk
m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
» Need a dirty bit (line different from memory or not)
m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)
m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

CSE351 - Autumn 2010 32

University of Washington

Software Caches are More Flexible

m Examples

= File system buffer caches, web browser caches, etc.

m Some design differences
= Almost always fully-associative
= 50, no placement restrictions

= index structures like hash tables are common (for placement)
= Often use complex replacement policies

= misses are very expensive when disk or network involved
= worth thousands of cycles to avoid them
® Not necessarily constrained to single “block” transfers

= may fetch or write-back in larger units, opportunistically

CSE351 - Autumn 2010

33

University of Washington

The Memory Mountain

Read throughput (MB/s)

Pentium Il Xeon
1200 550 MHz
o 16 KB on-chip L1 d-cache
1000 — 16 KB on-chip L1 i-cache
512 KB off-chip unified L2 cache
800 ,,,

[} o . .
Stride (words) Working set size (bytes)

CSE351 - Autumn 2010 34

University of Washington

Optimizations for the Memory Hierarchy

m Write code that has locality
® Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far apart in
time

m How to achieve?
= Proper choice of algorithm
® Loop transformations

m Cache versus register-level optimization:
® |n both cases locality desirable

= Register space much smaller
+ requires scalar replacement to exploit temporal locality

= Register level optimizations include exhibiting instruction level
parallelism (conflicts with locality)

CSE351 - Autumn 2010 35

University of Washington

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++t)
c[i*n + j] += a[i*n + k]*b[k*n + j];

—

I
*

CSE351 - Autumn 2010 36

University of Washington

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

n
m First iteration: '
" n/8+n=9n/8 misses |
(omitting matrix c) _ %
= Afterwards in cache: u o m—
(schematic)
= *
|
8 wide

CSE351 - Autumn 2010 37

University of Washington

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
® Cache block = 8 doubles
® Cache size C << n (much smaller than n)

n
m Other iterations: T
= Again: -]
n/8 + n = 9n/8 misses _ *
(omitting matrix c) -
8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

CSE351 - Autumn 2010 38

University of Washington

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++4)
for (k1 = k; k1l < k+B; k++)
c[il*n + j1l] += a[il*n + k1l]*b[kl*n + jl];

il
c a b c
= * +
| i1 [0

Block size B x B

CSE351 - Autumn 2010 39

University of Washington

Cache Miss Analysis

m Assume:
® Cache block = 8 doubles

= Cache size C << n (much smaller than n)
= Four blocks M fit into cache: 4B2< C

. . . n/B blocks
m First (block) iteration:

= B2/8 misses for each block M [[[]| |
= 2n/B * B2/8 =nB/4
(omitting matrix c)

]
*

_>m.-}

. Block size B x B
= Afterwards in cache B

(schematic)

1]
*

CSE351 - Autumn 2010 40

University of Washington

Cache Miss Analysis

m Assume:
® Cache block = 8 doubles

= Cache size C << n (much smaller than n)
® Three blocks ™ fit into cache: 3B>< C

. . n/B blocks
m Other (block) iterations: —A
® Same as first iteration -
= 2n/B * B2/8 =nB/4 UL

m Total misses:
= nB/4 * (n/B)?=n3/(4B)

Block size Bx B

CSE351 - Autumn 2010 41

University of Washington

Summary

m No blocking: (9/8) * n3

m Blocking: 1/(4B) * n3

m IfB=8 differenceis4*8*9/8 =36x
m If B=16 differenceis4*16*9 /8 =72x

m Suggests largest possible block size B, but limit 4B2 < C!
(can possibly be relaxed a bit, but there is a limit for B)
m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= Input data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

CSE351 - Autumn 2010 42

