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Who is Luis? 

PhD in architecture,  

multiprocessors, parallelism, 

compilers. 
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Who are you? 

 

 55+ students (wow!) 

 Who has written programs in assembly before? 

 Written a threaded program before? 

 

 

 What is an interface? 

 

 Why do we need a hardware/software interface? 
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C vs. Assembler vs. Machine Programs 

 The three program fragments are equivalent 

 You'd rather write C! 

 The hardware likes bit strings! 
 The machine instructions are actually much shorter than the bits 

required torepresent the characters of the assembler code 

if ( x != 0 ) y = (y+z) / x;         cmpl    $0, -4(%ebp) 

        je      .L2 

        movl    -12(%ebp), %eax 

        movl    -8(%ebp), %edx 

        leal    (%edx,%eax), %eax 

        movl    %eax, %edx 

        sarl    $31, %edx 

        idivl   -4(%ebp) 

        movl    %eax, -8(%ebp) 

.L2: 

1000001101111100001001000001110000000000 

0111010000011000 

10001011010001000010010000010100 

10001011010001100010010100010100 

100011010000010000000010 

1000100111000010 

110000011111101000011111 

11110111011111000010010000011100 

10001001010001000010010000011000 
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HW/SW Interface: The Historical Perspective 

 Hardware started out quite primitive 

 Design was expensive  the instruction set was very simple 

 E.g., a single instruction can add two integers 

 Software was also very primitive 

Hardware 

Architecture Specification (Interface) 
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HW/SW Interface: Assemblers 
 Life was made a lot better by assemblers 

 1 assembly instruction = 1 machine instruction, but... 

 different syntax: assembly instructions are character strings, not bit 
strings 

Hardware 

User 

Program 

in 

Asm 

Assembler specification 

Assembler 
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HW/SW Interface: Higher Level Languages (HLL's) 
 Higher level of abstraction: 

 1 HLL line is compiled into many (many) assembler lines 

Hardware 
User 

Program 

in C 

C language specification 

Assembler 
C 

Compiler 
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HW/SW Interface: Code / Compile / Run Times 

Hardware 

User 

Program 

in C 

Assembler C 

Compiler 

.exe 

File 

Code Time Compile Time Run Time 

Note: The compiler and assembler are just programs, developed using 

          this same process. 
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Overview 

 Course themes: big and little 

 Four important realities 

 How the course fits into the CSE curriculum 

 Logistics 

 

 

 

 (ready? ) 
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The Big Theme 

 THE HARDWARE/SOFTWARE INTERFACE 

 How does the hardware (0s and 1s, processor executing 
instructions) relate to the software (Java programs)? 

 Computing is about abstractions (but don’t forget reality) 

 What are the abstractions that we use? 

 What do YOU need to know about them? 
 When do they break down and you have to peek under the hood? 

 What assumptions are being made that may or may not hold in a new 
context or for a new technology? 

 What bugs can they cause and how do you find them? 

 Become a better programmer and begin to understand the 
thought processes that go into building computer systems 

 

10 



University of Washington 

Little Theme 1: Representation 

 All digital systems represent everything as 0s and 1s 

 Everything includes: 
 Numbers – integers and floating point 

 Characters – the building blocks of strings 

 Instructions – the directives to the CPU that make up a program 

 Pointers – addresses of data objects in memory 

 These encodings are stored in registers, caches, memories, 
disks, etc. 

 They all need addresses 
 A way to find them 

 Find a new place to put a new item  

 Reclaim the place in memory when data no longer needed 
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Little Theme 2: Translation 

 There is a big gap between how we think about programs and 
data and the 0s and 1s of computers 

 Need languages to describe what we mean 

 Languages need to be translated one step at a time 
 Word-by-word 

 Phrase structures 

 Grammar 

 We know Java as a programming language 
 Have to work our way down to the 0s and 1s of computers 

 Try not to lose anything in translation! 

 We’ll encounter Java byte-codes, C language, assembly language, and 
machine code (for the X86 family of CPU architectures) 
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Little Theme 3: Control Flow 

 How do computers orchestrate the many things they are 
doing – seemingly in parallel 

 What do we have to keep track of when we call a method, 
and then another, and then another, and so on 

 How do we know what to do upon “return” 

 User programs and operating systems 
 Multiple user programs 

 Operating system has to orchestrate them all  

 Each gets a share of computing cycles 

 They may need to share system resources (memory, I/O, disks) 

 Yielding and taking control of the processor 

 Voluntary or by force? 
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Course Outcomes 

 Foundation: basics of high-level programming (Java) 
 

 Understanding of some of the abstractions that exist 
between programs and the hardware they run on, why they 
exist, and how they build upon each other 

 Knowledge of some of the details of underlying 
implementations 

 Become more effective programmers 
 More efficient at finding and eliminating bugs 

 Understand the many factors that influence program performance 

 Facility with some of the many languages that we use to describe 
programs and data 

 Prepare for later classes in CSE 
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Reality 1: Ints ≠ Integers & Floats ≠ Reals 

 Representations are finite 

 Example 1: Is x2 ≥ 0? 
 Floats: Yes! 

 Ints: 

  40000 * 40000  --> 1600000000 

  50000 * 50000  --> ?? 

 Example 2: Is (x + y) + z  =  x + (y + z)? 
 Unsigned & Signed Ints: Yes! 

 Floats:  

  (1e20 + -1e20) + 3.14 --> 3.14 

  1e20 + (-1e20 + 3.14) --> ?? 
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Code Security Example 

 Similar to code found in FreeBSD’s implementation of 
getpeername 

 There are legions of smart people trying to find vulnerabilities 
in programs 
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/* Kernel memory region holding user-accessible data */ 

#define KSIZE 1024 

char kbuf[KSIZE]; int len = KSIZE; 

 

/* Copy at most maxlen bytes from kernel region to user buffer */ 

int copy_from_kernel(void *user_dest, int maxlen) { 

    /* Byte count len is minimum of buffer size and maxlen */ 

    if (KSIZE > maxlen) len = maxlen;     

    memcpy(user_dest, kbuf, len); 

    return len; 

} 
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Typical Usage 
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/* Kernel memory region holding user-accessible data */ 

#define KSIZE 1024 

char kbuf[KSIZE]; int len = KSIZE; 

 

/* Copy at most maxlen bytes from kernel region to user buffer */ 

int copy_from_kernel(void *user_dest, int maxlen) { 

    /* Byte count len is minimum of buffer size and maxlen */ 

    if (KSIZE > maxlen) len = maxlen;  

    memcpy(user_dest, kbuf, len); 

    return len; 

} 

#define MSIZE 528 

 

void getstuff() { 

    char mybuf[MSIZE]; 

    copy_from_kernel(mybuf, MSIZE); 

    printf(“%s\n”, mybuf); 

} 
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Malicious Usage 
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/* Kernel memory region holding user-accessible data */ 

#define KSIZE 1024 

char kbuf[KSIZE]; int len = KSIZE; 

 

/* Copy at most maxlen bytes from kernel region to user buffer */ 

int copy_from_kernel(void *user_dest, int maxlen) { 

    /* Byte count len is minimum of buffer size and maxlen */ 

    if (KSIZE > maxlen) len = maxlen; 

    memcpy(user_dest, kbuf, len); 

    return len; 

} 

#define MSIZE 528 

 

void getstuff() { 

    char mybuf[MSIZE]; 

    copy_from_kernel(mybuf, -MSIZE); 

    . . . 

} 
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Reality #2: You’ve Got to Know Assembly 

 Chances are, you’ll never write a program in assembly code 
 Compilers are much better and more patient than you are 

 But: Understanding assembly is the key to the machine-level 
execution model 
 Behavior of programs in presence of bugs 

 High-level language model breaks down 

 Tuning program performance 

 Understand optimizations done/not done by the compiler 

 Understanding sources of program inefficiency 

 Implementing system software 

 Operating systems must manage process state 

 Creating / fighting malware 

 x86 assembly is the language of choice 
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Assembly Code Example 

 Time Stamp Counter 
 Special 64-bit register in Intel-compatible machines 

 Incremented every clock cycle 

 Read with rdtsc instruction 

 Application 
 Measure time (in clock cycles) required by procedure 

20 

double t; 

start_counter(); 

P(); 

t = get_counter(); 

printf("P required %f clock cycles\n", t); 
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Code to Read Counter 

 Write small amount of assembly code using GCC’s asm facility 

 Inserts assembly code into machine code generated by 
compiler 

21 

/* Set *hi and *lo to the high and low order bits 

   of the cycle counter.   

*/ 

 

void access_counter(unsigned *hi, unsigned *lo) 

{ 

    asm("rdtsc; movl %%edx,%0; movl %%eax,%1"    

 : "=r" (*hi), "=r" (*lo) /* output    */ 

 :                        /* input     */ 

 : "%edx", "%eax");       /* clobbered */ 

} 
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Reality #3: Memory Matters 

 Memory is not unbounded 
 It must be allocated and managed 

 Many applications are memory-dominated 

 Memory referencing bugs are especially pernicious 
 Effects are distant in both time and space 

 Memory performance is not uniform 
 Cache and virtual memory effects can greatly affect program 

performance 

 Adapting program to characteristics of memory system can lead to 
major speed improvements 
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Memory Referencing Bug Example 
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double fun(int i) 

{ 

  volatile double d[1] = {3.14}; 

  volatile long int a[2]; 

  a[i] = 1073741824; /* Possibly out of bounds */ 

  return d[0]; 

} 

fun(0)  –> 3.14 

fun(1)  –> 3.14 

fun(2)  –> 3.1399998664856 

fun(3)  –> 2.00000061035156 

fun(4)  –> 3.14, then segmentation fault 
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Memory Referencing Bug Example 
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double fun(int i) 

{ 

  volatile double d[1] = {3.14}; 

  volatile long int a[2]; 

  a[i] = 1073741824; /* Possibly out of bounds */ 

  return d[0]; 

} 

fun(0)  –> 3.14 

fun(1)  –> 3.14 

fun(2)  –> 3.1399998664856 

fun(3)  –> 2.00000061035156 

fun(4)  –> 3.14, then segmentation fault 

Saved State 

d7 … d4 

d3 … d0 

a[1] 

a[0] 0 

1 

2 

3 

4 

Location accessed by 

fun(i) 

Explanation: 
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Memory Referencing Errors 

 C (and C++) do not provide any memory protection 
 Out of bounds array references 

 Invalid pointer values 

 Abuses of malloc/free 

 Can lead to nasty bugs 
 Whether or not bug has any effect depends on system and compiler 

 Action at a distance 

 Corrupted object logically unrelated to one being accessed 

 Effect of bug may be first observed long after it is generated 

 How can I deal with this? 
 Program in Java (or C#, or ML, or …) 

 Understand what possible interactions may occur 

 Use or develop tools to detect referencing errors 
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Memory System Performance Example 

 Hierarchical memory organization 

 Performance depends on access patterns 
 Including how program steps through multi-dimensional array 
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void copyji(int src[2048][2048], 

            int dst[2048][2048]) 

{ 

  int i,j; 

  for (j = 0; j < 2048; j++) 

    for (i = 0; i < 2048; i++) 

      dst[i][j] = src[i][j]; 

} 

void copyij(int src[2048][2048], 

            int dst[2048][2048]) 

{ 

  int i,j; 

  for (i = 0; i < 2048; i++) 

    for (j = 0; j < 2048; j++) 

      dst[i][j] = src[i][j]; 

} 

21 times slower 
(Pentium 4) 
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The Memory Mountain 
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Reality #4: Performance isn’t counting ops 

 Exact op count does not predict performance 
 Easily see 10:1 performance range depending on how code written 

 Must optimize at multiple levels: algorithm, data representations, 
procedures, and loops 

 Must understand system to optimize performance 
 How programs compiled and executed 

 How memory system is organized 

 How to measure program performance and identify bottlenecks 

 How to improve performance without destroying code modularity and 
generality 
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Example Matrix Multiplication 

 Standard desktop computer, vendor compiler, using optimization flags 

 Both implementations have exactly the same operations count (2n3) 
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MMM Plot: Analysis 
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Memory hierarchy and other optimizations: 20x 

Vector instructions: 4x 

Multiple threads: 4x 

 Reason for 20x: blocking or tiling, loop unrolling, array scalarization, 
instruction scheduling, search to find best choice 

 Effect: less register spills, less L1/L2 cache misses, less TLB misses 
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CSE351’s role in new CSE Curriculum 

 Pre-requisites 
 142 and 143: Intro Programming I and II 

 

 One of 6 core courses 
 311: Foundations I 

 312: Foundations II 

 331: SW Design and Implementation 

 332: Data Abstractions 

 351: HW/SW Interface 

 352: HW Design and Implementation 

 

 351 sets the context for many follow-on courses 
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CSE351’s place in new CSE Curriculum 
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CSE351 

CSE451 
Op Systems 

CSE401 
Compilers 

Concurrency 

CSE333 
Systems Prog 
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CSE484 
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The HW/SW Interface 
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hardware and software 

Execution  
Model 

Real-Time 
Control 



University of Washington 

Course Perspective 

 Most systems courses are Builder-Centric 
 Computer Architecture 

 Design pipelined processor in Verilog 

 Operating Systems 

 Implement large portions of operating system 

 Compilers 

 Write compiler for simple language 

 Networking 

 Implement and simulate network protocols 
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Course Perspective (Cont.) 

 This course is Programmer-Centric 
 Purpose is to show how software really works 

 By understanding the underlying system,  
one can be more effective as a programmer 

 Better debugging 

 Better basis for evaluating performance 

 How multiple activities work in concert (e.g., OS and user programs) 

 Not just a course for dedicated hackers 

 What every CSE major needs to know 

 Provide a context in which to place the other CSE courses you’ll take 
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Textbooks 

 Computer Systems: A Programmer’s Perspective, 2nd Edition 
 Randal E. Bryant and David R. O’Hallaron  

 Prentice-Hall, 2010 

 http://csapp.cs.cmu.edu 

 This book really matters for the course! 

 How to solve labs 

 Practice problems typical of exam problems 

 

 A good C book. 
 C: A Reference Manual (Harbison and Steele) 

 The C Programming Language (Kernighan and Ritchie) 

 

35 

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/


University of Washington 

Course Components 

 Lectures (~30) 
 Higher-level concepts – I’ll assume you’ve done the reading in the text 

 Sections (~10) 
 Applied concepts, important tools and skills for labs, clarification of 

lectures, exam review and preparation 

 Written assignments (4) 
 Problems from text to solidify understanding 

 Labs (4) 
 Provide in-depth understanding (via practice) of an aspect of systems 

 Exams (midterm + final) 
 Test your understanding of concepts and principles 
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Resources  

 

 Course Web Page 
 http://www.cse.washington.edu/351 

 Copies of lectures, assignments, exams 

 Course Discussion Board 
 Keep in touch outside of class – help each other 

 Staff will monitor and contribute 

 Course Mailing List 
 Low traffic – mostly announcements; you are already subscribed 

 Staff email 
 Things that are not appropriate for discussion board or better offline 

 Anonymous Feedback (will be linked from homepage) 
 Any comments about anything related to the course 

where you would feel better not attaching your name 
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Policies: Grading 

 Exams: weighted 1/3 (midterm), 2/3 (final) 

 Written assignments: weighted according to effort 
 We’ll try to make these about the same 

 Labs assignments: weighted according to effort 
 These will likely increase in weight as the quarter progresses 

 

 Grading: 
 25% written assignments 

 35% lab assignments 

 40% exams 
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Welcome to CSE351! 

 Let’s have fun 

 Let’s learn – together 

 Let’s communicate 

 Let’s set the bar for a useful and interesting class 

 

 Many thanks to the many instructors who have shared their 
lecture notes – I will be borrowing liberally through the qtr – 
they deserve all the credit, the errors are all mine 
 UW: Gaetano Borriello (Inaugural edition of CSE 351, Spring 2010) 

 CMU:  Randy Bryant, David O’Halloran, Gregory Kesden, Markus Püschel 

 Harvard: Matt Welsh 

 UW: Tom Anderson, Luis Ceze, John Zahorjan 
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