
University of Washington

CSE351

 Announcements:
 HW0, having fun?

 Use discussion boards!

 Sign up for cse351@cs mailing list

 If you enrolled recently, you might not be on it

1

University of Washington

Today’s topics

 Memory and its bits, bytes, and integers

 Representing information as bits

 Bit-level manipulations
 Boolean algebra

 Boolean algebra in C

2

University of Washington

Hardware: Logical View

CPU Memory

Bus

Disks Net USB Etc.

University of Washington

Hardware: Semi-Logical View

University of Washington

Hardware: Physical View

University of Washington

Performance: It's Not Just CPU Speed

 Data and instructions reside in memory

 To execute an instruction, it must be fetched onto the CPU

 Then, the data the instruction operates on must be fetched onto
the CPU

 CPU Memory bandwidth can limit performance

 Improving performance 1: hardware improvements to
increase memory bandwidth (e.g., DDR → DDR2 → DDR3)

 Improving performance 2: move less data into/out of the
CPU

 Put some “memory” on the CPU chip

 The next slide is just an introduction. We'll see a more full
explanation later in the course.

University of Washington

CPU “Memory”: Registers and Instruction
Cache

 There are a fixed number of registers on the CPU
 Registers hold data

 There is an I-cache on the CPU holding recently fetched
instructions
 If you execute a loop that fits in the cache, the CPU goes to memory for

those instructions only once, then executes out of its cache

Instruction

Cache

Registers

Memory
Program

controlled

data

movement

Transparent

(hw controlled)

instruction

caching

CPU

University of Washington

Introduction to Memory

University of Washington

Binary Representations

 Base 2 number representation
 Represent 35110 as 00000001010111112 or 1010111112

 Electronic implementation
 Easy to store with bi-stable elements

 Reliably transmitted on noisy and inaccurate wires

0.0V

0.5V

2.8V

3.3V

0 1 0

9

University of Washington

Encoding Byte Values

 Binary 000000002 -- 111111112

 Byte = 8 bits (binary digits)

 Decimal 010 -- 25510

 Hexadecimal 0016 -- FF16

 Byte = 2 hexadecimal (hex) or base 16 digits

 Base-16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C

 as 0xFA1D37B or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

10

University of Washington

What is memory, really?

 How do we find data in memory?

11

University of Washington

Byte-Oriented Memory Organization

 Programs refer to addresses
 Conceptually, a very large array of bytes

 System provides an address space private to each “process”

 Process = program being executed + its data + its “state”

 Program can clobber its own data, but not that of others

 Clobbering code or “state” often leads to crashes (or security holes)

 Compiler + run-time system control memory allocation
 Where different program objects should be stored

 All allocation within a single address space

• • •

12

University of Washington

Machine Words

 Machine has a “word size”
 Nominal size of integer-valued data

 Including addresses

 Most current machines use 32 bits (4 bytes) words

 Limits addresses to 4GB

 Becoming too small for memory-intensive applications

 High-end systems use 64 bits (8 bytes) words

 Potential address space 1.8 X 1019 bytes

 x86-64 machines support 48-bit addresses: 256 Terabytes

 Can’t be real physical addresses -> virtual addresses

 Machines support multiple data formats

 Fractions or multiples of word size

 Always integral number of bytes

13

University of Washington

Word-Oriented Memory Organization

 Addresses specify
locations of bytes in memory
 Address of first byte in word

 Addresses of successive words
differ by 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

14

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

15

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

5F 01 00 00

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

 Pointer to address 0004
stored at address 001C

16

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04 00 00 00

5F 01 00 00

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

 Pointer to address 0004
stored at address 001C

 Pointer to a pointer
in 0024

17

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04 00 00 00

1C 00 00 00

5F 01 00 00

University of Washington

Addresses and Pointers

 Address is a location in memory

 Pointer is a data object
that contains an address

 Address 0004
stores the value 351 (or 15F16)

 Pointer to address 0004
stored at address 001C

 Pointer to a pointer
in 0024

 Address 0014
stores the value 12
 Is it a pointer?

18

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

04 00 00 00

1C 00 00 00

5F 01 00 00

0C 00 00 00

University of Washington

Data Representations

 Sizes of objects (in bytes)
 Java Data Type C Data Type Typical 32-bit x86-64

 boolean bool 1 1

 byte char 1 1

 char 2 2

 short short int 2 2

 int int 4 4

 float float 4 4

 long int 4 8

 double double 8 8

 long long long 8 8

 long double 8 16

 (reference) pointer * 4 8

19

University of Washington

Byte Ordering

 How should bytes within multi-byte word be ordered in
memory?
 Peanut butter or chocolate first?

 Conventions!
 Big-endian, Little-endian

 Based on Guliver stories, tribes cut eggs on different sides (big, little)

20

University of Washington

Byte Ordering Example

 Big-Endian (PPC, Internet)
 Least significant byte has highest address

 Little-Endian (x86)
 Least significant byte has lowest address

 Example
 Variable has 4-byte representation 0x01234567

 Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

21

University of Washington

Byte Ordering Example

 Big-Endian (PPC, Internet)
 Least significant byte has highest address

 Little-Endian (x86)
 Least significant byte has lowest address

 Example
 Variable has 4-byte representation 0x01234567

 Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

22

University of Washington

Byte Ordering Example

 Big-Endian (PPC, Sun, Internet)
 Least significant byte has highest address

 Little-Endian (x86)
 Least significant byte has lowest address

 Example
 Variable has 4-byte representation 0x01234567

 Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

23

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Text representation of binary machine code

 Generated by program that reads the machine code

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

24

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Text representation of binary machine code

 Generated by program that reads the machine code

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

Deciphering numbers

 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse (little-endian): ab 12 00 00
25

University of Washington

Addresses and Pointers in C

 Pointer declarations use *
 int * ptr; int x, y; ptr = &x;

 Declares a variable ptr that is a pointer to a data item that is an integer

 Declares integer values named x and y

 Assigns ptr to point to the address where x is stored

 We can do arithmetic on pointers
 ptr = ptr + 1; // really adds 4 (because an integer uses 4 bytes)

 Changes the value of the pointer so that it now points to the next data
item in memory (that may be y, may not – dangerous!)

 To use the value pointed to by a pointer we use de-reference
 y = *ptr + 1; is the same as y = x + 1;

 But, if ptr = &y then y = *ptr + 1; is the same as y = y + 1;

 *ptr is the value stored at the location to which the pointer ptr is pointing

26

& = ‘address of value’
* = ‘value at address’
 or ‘de-reference’

*(&x) is equivalent to x

University of Washington

Arrays

 Arrays represent adjacent locations in memory storing the
same type of data object
 E.g., int big_array[128];

allocated 512 adjacent locations in memory starting at 0x00ff0000

 Pointers to arrays point to a certain type of object
 E.g., int * array_ptr;

array_ptr = big_array;
array_ptr = &big_array[0];
array_ptr = &big_array[3];
array_ptr = &big_array[0] + 3;
array_ptr = big_array + 3;
*array_ptr = *array_ptr + 1;
array_ptr = &big_array[130];

 In general: &big_array[i] is the same as (big_array + i)
 which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

27

University of Washington

Arrays

 Arrays represent adjacent locations in memory storing the
same type of data object
 E.g., int big_array[128];

allocated 512 adjacent locations in memory starting at 0x00ff0000

 Pointers to arrays point to a certain type of object
 E.g., int * array_ptr;

array_ptr = big_array; 0x00ff0000
array_ptr = &big_array[0]; 0x00ff0000
array_ptr = &big_array[3]; 0x00ff000c
array_ptr = &big_array[0] + 3; 0x00ff000c (adds 3 * size of int)

array_ptr = big_array + 3; 0x00ff000c (adds 3 * size of int)

*array_ptr = *array_ptr + 1; 0x00ff000c (but big_array[3] is incremented)

array_ptr = &big_array[130]; 0x00ff0208 (out of bounds, C doesn’t check)

 In general: &big_array[i] is the same as (big_array + i)
 which implicitly computes: &bigarray[0] + i*sizeof(bigarray[0]);

28

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 int x, y;

x = y; // get value at y and put it in x

29

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

00 00 00 24

3C D0 27 00

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 int x, y;

x = y; // get value at y and put it in x

30

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

3C D0 27 00

3C D0 27 00

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 int x, y;

x = y; // get value at y and put it in x

 int * x; int y;
x = &y + 12; // get address of y add 12

31

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

3C D0 27 00

00 00 00 24

University of Washington

General rules for C (assignments)

 Left-hand-side = right-hand-side
 LHS must evaluate to a memory LOCATION

 RHS must evaluate to a VALUE (could be an address)

 E.g., x at location 0x04, y at 0x18
 int x, y;

x = y; // get value at y and put it in x

 int * x; int y;
x = &y + 3; // get address of y add 12

 int * x; int y;
*x = y; // value of y to location x points

32

0000
0004
0008
000C
0010
0014
0018
001C
0020
0024

00 00 00 24

3C D0 27 00

3C D0 27 00

University of Washington

Examining Data Representations

 Code to print byte representation of data
 Casting pointer to unsigned char * creates byte array

typedef unsigned char * pointer;

void show_bytes(pointer start, int len)

{

 int i;

 for (i = 0; i < len; i++)

 printf("0x%p\t0x%.2x\n", start+i, start[i]);

 printf("\n");

}

Some printf directives:
%p: Print pointer
%x: Print hexadecimal
“\n”: New line

33

void show_int (int x)

{

 show_bytes((pointer) &x, sizeof(int));

}

University of Washington

show_bytes Execution Example

34

int a = 12345; // represented as 0x00003039

printf("int a = 12345;\n");

show_int(a); // show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 12345;

0x11ffffcb8 0x39

0x11ffffcb9 0x30

0x11ffffcba 0x00

0x11ffffcbb 0x00

University of Washington

Representing Integers

 int A = 12345;

 int B = -12345;

 long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C

39
30
00
00

IA32 C

35

University of Washington

Representing Integers

 int A = 12345;

 int B = -12345;

 long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C

39
30
00
00

IA32 C

36

University of Washington

Representing Integers

 int A = 12345;

 int B = -12345;

 long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C

39
30
00
00

IA32 C

37

University of Washington

Representing Integers

 int A = 12345;

 int B = -12345;

 long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C

39
30
00
00

IA32 C

38

University of Washington

Representing Integers

 int A = 12345;

 int B = -12345;

 long int C = 12345;

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64 A

30
39

00
00

Sun A

C7
CF
FF
FF

IA32, x86-64 B

CF
C7

FF
FF

Sun B

Two’s complement representation
for negative integers (covered later)

00
00
00
00

39
30
00
00

X86-64 C

30
39

00
00

Sun C

39
30
00
00

IA32 C

39

University of Washington

Representing Pointers

 int B = -12345;

 int *P = &B;

FF
7F
00
00

0C
89
EC
FF

x86-64 P

Different compilers & machines assign different locations to objects

FB
2C

EF
FF

Sun P

FF
BF

D4
F8

IA32 P

40

University of Washington

4

1

Representing strings

 A C-style string is represented by an array of bytes.

—Elements are one-byte ASCII codes for each character.

—A 0 value marks the end of the array.

32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

University of Washington

Null-terminated Strings
 For example, “Harry Potter” can be stored as a 13-byte array.

 Why do we put a a 0, or null, at the end of the string?

 Computing string length?

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

University of Washington

char S[6] = "12345";

Compatibility

 Byte ordering not an issue

 Unicode characters – up to 4 bytes/character
 ASCII codes still work (leading 0 bit) but can support the many characters

in all languages in the world

 Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Linux/Alpha S Sun S

33
34

31
32

35
00

33
34

31
32

35
00

43

University of Washington

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

 AND: A&B = 1 when both A is 1 and B is 1

 OR: A|B = 1 when either A is 1 or B is 1

 XOR: A^B = 1 when either A is 1 or B is 1, but not both

 NOT: ~A = 1 when A is 0 and vice-versa

 DeMorgan’s Law: ~(A | B) = ~A & ~B

& 0 1

0 0 0

1 0 1

~

0 1

1 0

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

44

University of Washington

General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise

 All of the properties of Boolean algebra apply

 How does this relate to set operations?

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010

45

 01010101
^ 01010101
 00111100

University of Washington

Representing & Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j A

01101001 { 0, 3, 5, 6 }

76543210

01010101 { 0, 2, 4, 6 }

76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

46

University of Washington

Bit-Level Operations in C

 Operations &, |, ^, ~ are available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102

 ~0x00 --> 0xFF

~000000002 --> 111111112

 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012

 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

47

University of Washington

Contrast: Logic Operations in C

 Contrast to logical operators
 &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination

 Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p++ (avoids null pointer access, null pointer = 0x00000000
)

48

