Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101?

Fractional Binary Numbers

- Representation
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Fractional Binary Numbers: Examples

■ Value
5 and $3 / 4$
2 and $7 / 8$
63/64

Representation

```
\[
101.11_{2}
\]
\[
10.111_{2}
\]
\[
0.111111_{2}
\]
```

■ Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form $0.111111 \ldots 2$ are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Representable Numbers

- Limitation
- Can only exactly represent numbers of the form $x / 2^{k}$
- Other rational numbers have repeating bit representations
- Value

1/3
1/5
1/10

Representation

0.0101010101[01]...2
$0.001100110011[0011] \ldots 2$
$0.0001100110011[0011] \ldots 2$

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical Form:

$$
(-1)^{S} M 2^{E}
$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

■ Encoding

- MSB s is sign bit s
- frac field encodes M (but is not equal to M)
- \exp field encodes E (but is not equal to E)

s	\exp	frac

Precisions

- Single precision: 32 bits

s	exp		frac
1	8		23

■ Double precision: 64 bits

s	exp		frac	
1	11		52	

■ Extended precision: 80 bits (Intel only)

s	exp		frac	
1	15		63 or 64	

Normalized Values

- Condition: $\exp \neq 000 \ldots 0$ and $\exp \neq 111 . . .1$

■ Exponent coded as biased value: $\exp =E+$ Bias

- exp is an unsigned value ranging from 1 to $2^{\mathrm{e}}-2$
- Allows negative values for E (= exp - Bias)
- Bias $=2^{\mathrm{e}-1}-1$, where e is number of exponent bits (bits in exp)
- Single precision: 127 (exp: 1...254, E: -126...127)
- Double precision: 1023 (exp: 1...2046, E: -1022...1023)

■ Significand coded with implied leading 1: $M=1 . \mathbf{x x x} . . . \mathbf{x}_{2}$

- xxx...x: bits of frac
- Minimum when 000... $0 \quad(M=1.0)$
- Maximum when 111... $1(M=2.0-\varepsilon)$
- Get extra leading bit for "free"

Normalized Encoding Example

■ Value: Float $F=12345.0$;

- $12345_{10}=11000000111001_{2}$

$$
=1.1000000111001_{2} \times 2^{13}
$$

- Significand

$M=$	$1 . \underline{1000000111001}_{2}$
frac $=$	$\underline{10000001110010000000000_{2}}$

■ Exponent

E	$=$	13
Bias $=$	127	
\exp	$=$	$140=10001100_{2}$

■ Result:

0	10001100	10000001110010000000000
$\mathbf{e x p}$	frac	

Denormalized Values

- Condition: $\exp =000 . .0$

■ Exponent value: $E=\exp -$ Bias +1 (instead of $E=\exp -$ Bias)
■ Significand coded with implied leading $0: M=0 . \times x x . . . x_{2}$

- xxx....x: bits of frac

■ Cases

- $\exp =000$... 0, frac $=000$... 0
- Represents value 0
- Note distinct values: +0 and -0 (why?)
- exp = 000...0, frac $=000$... 0
- Numbers very close to 0.0
- Lose precision as get smaller
- Equispaced

Special Values

- Condition: $\exp =111$... 1

■ Case: $\exp =111 \ldots 1$, frac $=000 . . .0$

- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 $=-1.0 /-0.0=+\infty, 1.0 /-0.0=-1.0 / 0.0=-\infty$

■ Case: $\exp =111 . . .1$, frac $\neq 000 . . .0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty * 0$

Visualization: Floating Point Encodings

Tiny Floating Point Example

s	\exp	frac
1	4	3

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

■ Same general form as IEEE Format

- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

Dynamic Range (Positive Only)

	s exp frac	Value					
	0	0000	000	-6	0		
	0	0000	001	-6	$1 / 8 * 1 / 64=1 / 512$	closest to zero	
Denormalized	0	0000	010	-6	$2 / 8 * 1 / 64=2 / 512$		
numbers	\ldots						
	0	0000	110	-6	$6 / 8 * 1 / 64=6 / 512$		
	0	0000	111	-6	$7 / 8 * 1 / 64=7 / 512$	largest denorm	
	0	0001	000	-6	$8 / 8 * 1 / 64=8 / 512$	smallest norm	
	0	0001	001	-6	$9 / 8 * 1 / 64=9 / 512$		
Normalized	\ldots						
	0	0110	110	-1	$14 / 8 * 1 / 2=14 / 16$		
numbers	0	0110	111	-1	$15 / 8 * 1 / 2=15 / 16$	closest to 1 below	
	0	0111	000	0	$8 / 8 * 1$	$=1$	
	0	0111	001	0	$9 / 8 * 1$	$=9 / 8$	closest to 1 above
	0	0111	010	0	$10 / 8 * 1$	$=10 / 8$	
	\ldots						
	0	1110	110	7	$14 / 8 * 128$	$=224$	
	0	1110	111	7	$15 / 8 * 128$	$=240$	largest norm
	0	1111	000	n / a	$i n f$		

Distribution of Values

■ 6-bit IEEE-like format

- e = 3 exponent bits
- $f=2$ fraction bits

- Bias is $2^{3-1}-1=3$

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits

s	exp	frac
1	3	2

- Bias is 3

Interesting Numbers

Description
■ Zero
■ Smallest Pos. Denorm.

- Single ≈ 1.4 * 10^{-45}
- Double ≈ 4.9 * 10^{-324}

■ Largest Denormalized 00... 00 11... 11

- Single $\approx 1.18 * 10^{-38}$
- Double ≈ 2.2 * 10^{-308}

■ Smallest Pos. Norm
00... 01 00... 00

- Just larger than largest denormalized

■ One

- Largest Normalized
- Single ≈ 3.4 * 10^{38}
- Double ≈ 1.8 * 10^{308}
01... 11 00... 00
11... 10 11... 11
$(2.0-\varepsilon) * 2^{\{127,1023\}}$

Special Properties of Encoding

- Floating point zero $\left(0^{+}\right)$exactly the same bits as integer zero
- All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider $0^{-}=0^{+}=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

Floating Point Operations: Basic Idea

$\square \mathbf{x}+_{f} y=\operatorname{Round}(x+y)$

■ $\mathbf{x} *_{f} y=\operatorname{Round}(x * y)$

- Basic idea
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

Rounding

■ Rounding Modes (illustrate with \$ rounding)

	$\$ 1.40$	$\$ 1.60$	$\$ 1.50$	$\$ 2.50$	$-\$ 1.50$
- Towards zero	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 1$
- Round down $(-\infty)$	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 2$
- Round up $(+\infty)$	$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$-\$ 1$
- Nearest (default)	$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$-\$ 2$

- What are the advantages of the modes?

Closer Look at Round-To-Nearest

- Default Rounding Mode
- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated

■ Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth
$1.2349999 \quad 1.23$ (Less than half way)
$1.2350001 \quad 1.24 \quad$ (Greater than half way)
$1.2350000 \quad 1.24 \quad$ (Half way—round up)
$1.2450000 \quad 1.24 \quad$ (Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
- "Half way" when bits to right of rounding position $=100 \ldots 2$
- Examples
- Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
$23 / 32$	10.00011_{2}	10.00_{2}	$(<1 / 2$-down $)$	2
$23 / 16$	10.00110_{2}	10.01_{2}	$(>1 / 2$-up)	$21 / 4$
$27 / 8$	10.11100_{2}	11.00_{2}	$(1 / 2-$ up $)$	3
$25 / 8$	10.10100_{2}	10.10_{2}	$(1 / 2-$ down $)$	$21 / 2$

Floating Point Multiplication

$$
(-1)^{s 1} M 12^{E 1} *(-1)^{s 2} M 22^{E 2}
$$

- Exact Result: $(-1)^{s} M 2^{E}$
- Sign s :
s1^s2
- Significand M : $M 1$ * M2
- Exponent E: E1 + E2
- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

Floating Point Addition

$(-1)^{\mathrm{s} 1} \mathrm{M} 12^{\mathrm{E} 1}+(-1)^{\mathrm{s} 2} \mathrm{M} 22^{\mathrm{E} 2}$
Assume E1 > E2

- Exact Result: $(-1)^{s} M 2^{E}$
- Sign s, significand M :
- Result of signed align \& add
- Exponent E :

E1

$(-1)^{5^{2}} \mathrm{M} 2$

■ Fixing

- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Hmm... if we round at every operation...

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding

■ Infinities and NaNs cause issues (e.g., no additive inverse)

- Overflow and infinity

Floating Point in C

- C Guarantees Two Levels
float single precision
double double precision
- Conversions/Casting
- Casting between int, float, and double changes bit representation
- Double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round according to rounding mode

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
    volatile double d[1] = {3.14};
    volatile long int a[2];
    a[i] = 1073741824; /* Possibly out of bounds */
    return d[0];
}
```

fun (0) $\quad \rightarrow \quad 3.14$
fun (1) $\quad \rightarrow \quad 3.14$
fun(2) $\quad->\quad 3.1399998664856$
fun (3) $->\quad 2.00000061035156$
fun (4) $->\quad 3.14$, then segmentation fault

Explanation:

Saved State	$\left[\begin{array}{l} 4 \\ 3 \end{array}\right\}$	Location accessed by fun(i)
d7 ... d4		
d3 ... d0		
a [1]		
a[0]	0	

Representing 3.14 as a Double FP Number

- $1073741824=01000000000000000000000000000000$
- $3.14=11.001000111101011100001010000$...
- $(-1)^{s} M 2^{E}$
- $\mathrm{S}=0$ encoded as 0
- $M=1.100100011110101110000101000$.... (leading 1 left out)
- $E=1$ encoded as 1024 (with bias)

| s | exp (11) | frac (first 20 bits) |
| :---: | :---: | :---: | :---: |
| $0 \quad 10000000000$ | 10010001111010111000 | |

frac (another 32 bits)
01010000 ...

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
    volatile double d[1] = {3.14};
    volatile long int a[2];
    a[i] = 1073741824; /* Possibly out of bounds */
    return d[0];
}
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```


Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^{E}$

■ One can reason about operations independent of implementation

- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

