Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2$

Fractional Binary Numbers: Examples

Value

Representation

5 and 3/4 101.11_2 2 and 7/8 10.111_2 0.111111_2

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$$

• Use notation $1.0 - \varepsilon$

Representable Numbers

Limitation

1/10

- Can only exactly represent numbers of the form $x/2^k$
- Other rational numbers have repeating bit representations

Value Representation

1/3 0.01010101[01]...2

1/5 0.00110011[0011]...₂

 $0.0001100110011[0011]..._{2}$

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- frac field encodes M (but is not equal to M)
- exp field encodes E (but is not equal to E)

S	ехр	frac

Precisions

Single precision: 32 bits

Double precision: 64 bits

S	ехр	frac
1	11	52

Extended precision: 80 bits (Intel only)

s	exp	frac
1	15	63 or 64

Normalized Values

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: exp = E + Bias
 - **exp** is an unsigned value ranging from 1 to 2^e-2
 - Allows negative values for E (= exp Bias)
 - $Bias = 2^{e-1} 1$, where e is number of exponent bits (bits in exp)
 - Single precision: 127 (*exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (*exp*: 1...2046, *E*: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when **111...1** ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 12345.0;
```

```
 12345_{10} = 11000000111001_2 
= 1.1000000111001_2 \times 2^{13}
```

Significand

```
M = 1.\frac{1000000111001}{1000000111001}
frac= \frac{1000000111001}{100000000000}
```

Exponent

```
E = 13
Bias = 127
exp = 140 = 10001100_{2}
```

Result:

Denormalized Values

- Condition: exp = 000...0
- **Exponent value:** $E = \exp{-Bias} + 1$ (instead of $E = \exp{-Bias}$)
- Significand coded with implied leading 0: M = 0. xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **■** Condition: **exp** = **111...1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Visualization: Floating Point Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s exp	frac	E	Value
	0 0000	000	-6	0
	0 0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512
numbers	•••			
	0 0000	110	-6	6/8*1/64 = 6/512
	0 0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512
	•••			
	0 0110	110	-1	14/8*1/2 = 14/16
No was alima d	0 0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1
numbers	0 0111	001	0	9/8*1 = 9/8 closest to 1 above
	0 0111	010	0	10/8*1 = 10/8
	•••			
	0 1110	110	7	14/8*128 = 224
	0 1110	111	7	15/8*128 = 240 largest norm
	0 1111	000	n/a	inf

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
■ Smallest Pos. Denorm. ■ Single $\approx 1.4 * 10^{-45}$ ■ Double $\approx 4.9 * 10^{-324}$	0000	0001	2- {23,52} * 2- {126,1022}
 Largest Denormalized Single ≈ 1.18 * 10⁻³⁸ Double ≈ 2.2 * 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) * 2^{-\{126,1022\}}$
Smallest Pos. Norm.Just larger than largest de	0001 enormalize		1.0 * 2- {126,1022}
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 * 10³⁸ Double ≈ 1.8 * 10³⁰⁸ 	1110	1111	$(2.0 - \varepsilon) * 2^{\{127,1023\}}$

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down ($-\infty$)	\$1	\$1	\$1	\$2	- \$2
• Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest (default)	\$1	\$2	\$2	\$2	- \$2

■ What are the advantages of the modes?

Closer Look at Round-To-Nearest

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down

Rounding Binary Numbers

Binary Fractional Numbers

"Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Floating Point Multiplication

$$(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$$

■ Exact Result: $(-1)^s M 2^E$

• Sign s: s1 ^ s2

■ Significand *M*: *M1* * *M2*

■ Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

$$(-1)^{s1}$$
 M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
Assume $E1 > E2$

- Exact Result: $(-1)^s M 2^E$
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round M to fit frac precision

Hmm... if we round at every operation...

Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues (e.g., no additive inverse)
- Overflow and infinity

Floating Point in C

C Guarantees Two Levels

```
float single precision double double
```

Conversions/Casting

- Casting between int, float, and double changes bit representation
- Double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has \leq 53 bit word size
- int → float
 - Will round according to rounding mode

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```

Explanation:

Representing 3.14 as a Double FP Number

- **3.14 = 11.0010 0011 1101 0111 0000 1010 000...**
- - S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000.... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

```
        s
        exp
        (11)
        frac (first 20 bits)

        0
        100 0000 0000
        1001 0001 1110 1011 1000
```

```
frac (another 32 bits)
```

0101 0000 ...

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

```
fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
```


Location accessed by fun(i)

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers