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Today Topics: Floating Point 

 Background: Fractional binary numbers 

 IEEE floating point standard: Definition 

 Example and properties 

 Rounding, addition, multiplication 

 Floating point in C 

 Summary 
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Fractional binary numbers 

 What is 1011.101? 
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Fractional Binary Numbers 

 Representation 
 Bits to right of “binary point” represent fractional powers of 2 

 Represents rational number: 
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Fractional Binary Numbers: Examples 

 Value Representation 
5 and 3/4  

2 and 7/8  

63/64  

 

 Observations 
 Divide by 2 by shifting right 

 Multiply by 2 by shifting left 

 Numbers of form 0.111111…2 are just below 1.0 

 1/2 + 1/4 + 1/8 + … + 1/2i + …  1.0 

 Use notation 1.0 –  

101.112 

10.1112 

0.1111112 
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Representable Numbers 

 Limitation 
 Can only exactly represent numbers of the form x/2k 

 Other rational numbers have repeating bit representations 

 

 Value Representation 
1/3 0.0101010101[01]…2 

1/5 0.001100110011[0011]…2 

1/10 0.0001100110011[0011]…2 
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IEEE Floating Point 

 IEEE Standard 754 
 Established in 1985 as uniform standard for floating point arithmetic 

 Before that, many idiosyncratic formats 

 Supported by all major CPUs 

 

 Driven by numerical concerns 
 Nice standards for rounding, overflow, underflow 

 Hard to make fast in hardware 

 Numerical analysts predominated over hardware designers in 
defining standard 
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 Numerical Form:  
   (–1)s M  2E 

 Sign bit s determines whether number is negative or positive 

 Significand (mantissa) M  normally a fractional value in range [1.0,2.0). 

 Exponent E weights value by power of two 

 

 Encoding 
 MSB s is sign bit s 

 frac field encodes M (but is not equal to M) 

 exp field encodes E (but is not equal to E) 

Floating Point Representation 

s exp frac 
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Precisions 

 Single precision: 32 bits 

 

 

 

 Double precision: 64 bits 

 

 

 

 Extended precision: 80 bits (Intel only) 

s exp frac 

s exp frac 

s exp frac 

1 8 23 

1 11 52 

1 15 63 or 64 
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Normalized Values 

 Condition: exp  000…0 and exp  111…1 

 

 Exponent coded as biased value: exp  =  E + Bias 
exp is an unsigned value ranging from 1 to 2e-2 

 Allows negative values for E ( = exp – Bias) 

Bias = 2e-1 - 1, where e is number of exponent bits (bits in exp) 

 Single precision: 127 (exp: 1…254, E: -126…127) 

 Double precision: 1023 (exp: 1…2046, E: -1022…1023) 

 

 Significand coded with implied leading 1: M  =  1.xxx…x2 

  xxx…x: bits of frac 

 Minimum when 000…0 (M = 1.0) 

 Maximum when 111…1 (M = 2.0 – ) 

 Get extra leading bit for “free” 
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Normalized Encoding Example 

 Value: Float F = 12345.0; 

 1234510  = 110000001110012    

                     = 1.10000001110012 x 213 

 

 Significand 
M  =  1.10000001110012 

frac =    100000011100100000000002 

 

 Exponent 
E   =  13 

Bias  =  127 

exp  =  140  = 100011002 
 

 Result: 
 

0 10001100 10000001110010000000000  
 s exp frac 
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Denormalized Values 

 Condition: exp = 000…0 

 

 Exponent value: E = exp – Bias + 1 (instead of E = exp – Bias) 

 Significand coded with implied leading 0: M = 0.xxx…x2 

 xxx…x: bits of frac 

 Cases 
  exp = 000…0, frac = 000…0 

 Represents value 0 

 Note distinct values: +0 and –0 (why?) 

 exp = 000…0, frac  000…0 

 Numbers very close to 0.0 

 Lose precision as get smaller 

 Equispaced 
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Special Values 

 Condition: exp = 111…1 

 

 Case: exp = 111…1, frac = 000…0 

 Represents value(infinity) 

 Operation that overflows 

 Both positive and negative 

 E.g., 1.0/0.0 = 1.0/0.0 = +,  1.0/0.0 = 1.0/0.0 =  

 

 Case: exp = 111…1, frac  000…0 

 Not-a-Number (NaN) 

 Represents case when no numeric value can be determined 

 E.g., sqrt(–1), ,*0
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Visualization: Floating Point Encodings 

+

0 

+Denorm +Normalized -Denorm -Normalized 

+0 
NaN NaN 
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Tiny Floating Point Example 

 8-bit Floating Point Representation 
 the sign bit is in the most significant bit. 

 the next four bits are the exponent, with a bias of 7. 

 the last three bits are the frac 

 

 Same general form as IEEE Format 
 normalized, denormalized 

 representation of 0, NaN, infinity 

s exp frac 

1 4 3 
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Dynamic Range (Positive Only) 
s exp  frac E Value  

0 0000 000 -6 0 

0 0000 001 -6 1/8*1/64 = 1/512 

0 0000 010 -6 2/8*1/64 = 2/512 

… 

0 0000 110 -6 6/8*1/64 = 6/512 

0 0000 111 -6 7/8*1/64 = 7/512 

0 0001 000 -6 8/8*1/64 = 8/512 

0 0001 001   -6 9/8*1/64 = 9/512 

… 

0 0110 110 -1 14/8*1/2 = 14/16 

0 0110 111 -1 15/8*1/2 = 15/16 

0 0111 000 0 8/8*1    = 1 

0 0111 001 0 9/8*1    = 9/8 

0 0111 010 0 10/8*1   = 10/8 

… 

0 1110 110 7 14/8*128 = 224 

0 1110 111 7 15/8*128 = 240 

0 1111 000 n/a inf 

closest to zero 

largest denorm 
smallest norm 

closest to 1 below 

closest to 1 above 

largest norm 

Denormalized 
numbers 

Normalized 
numbers 
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Distribution of Values 

 6-bit IEEE-like format 
 e = 3 exponent bits 

 f = 2 fraction bits 

 Bias is 23-1-1 = 3 

 

 Notice how the distribution gets denser toward zero.  

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

s exp frac 

1 3 2 
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Distribution of Values (close-up view) 

 6-bit IEEE-like format 
 e = 3 exponent bits 

 f = 2 fraction bits 

 Bias is 3 

 

 

 

 

 

 

 

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

s exp frac 

1 3 2 
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Interesting Numbers 

 Description exp frac Numeric Value 

 Zero 00…00 00…00 0.0 

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} * 2– {126,1022} 

 Single  1.4 * 10–45 

 Double  4.9 * 10–324 

 Largest Denormalized 00…00 11…11 (1.0 – ) * 2– {126,1022} 

 Single  1.18 * 10–38 

 Double  2.2 * 10–308 

 Smallest Pos. Norm. 00…01 00…00 1.0 * 2– {126,1022} 

 Just larger than largest denormalized 

 One 01…11 00…00 1.0 

  Largest Normalized 11…10 11…11 (2.0 – ) * 2{127,1023} 

 Single  3.4 * 1038 

 Double  1.8 * 10308 

{single,double} 
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Special Properties of Encoding 

 Floating point zero (0+) exactly the same bits as integer zero 
 All bits = 0 

 

 Can (Almost) Use Unsigned Integer Comparison 
 Must first compare sign bits 

 Must consider 0- = 0+ = 0 

 NaNs problematic 

 Will be greater than any other values 

 What should comparison yield? 

  Otherwise OK 

 Denorm vs. normalized 

 Normalized vs. infinity 
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Floating Point Operations: Basic Idea 

 x +f y = Round(x + y) 

 

 x *f y = Round(x * y) 

 

 Basic idea 
 First compute exact result 

 Make it fit into desired precision 

 Possibly overflow if exponent too large 

 Possibly round to fit into frac 
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Rounding 

 Rounding Modes (illustrate with $ rounding) 

 
  $1.40 $1.60 $1.50 $2.50 –$1.50 

 Towards zero $1 $1 $1 $2 –$1 

 Round down (-) $1 $1 $1 $2 –$2 

 Round up (+)  $2 $2 $2 $3 –$1 

 Nearest (default) $1 $2 $2 $2 –$2 

 

 

 What are the advantages of the modes? 
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Closer Look at Round-To-Nearest 

 Default Rounding Mode 
 Hard to get any other kind without dropping into assembly 

 All others are statistically biased 

 Sum of set of positive numbers will consistently be over- or under- 
estimated 

 

 Applying to Other Decimal Places / Bit Positions 
 When exactly halfway between two possible values 

 Round so that least significant digit is even 

 E.g., round to nearest hundredth 

1.2349999 1.23 (Less than half way) 

1.2350001 1.24 (Greater than half way) 

1.2350000 1.24 (Half way—round up) 

1.2450000 1.24 (Half way—round down) 
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Rounding Binary Numbers 

 Binary Fractional Numbers 
 “Half way” when bits to right of rounding position = 100…2 

 

 Examples 
 Round to nearest 1/4 (2 bits right of binary point) 

Value Binary Rounded Action Rounded Value 

2 3/32 10.000112 10.002 (<1/2—down) 2 

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4 

2 7/8 10.111002 11.002 (  1/2—up) 3 

2 5/8 10.101002 10.102 (  1/2—down) 2 1/2 
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Floating Point Multiplication 

 (–1)s1 M1  2E1
   *   (–1)s2 M2  2E2 

 Exact Result: (–1)s M  2E 
 Sign s:   s1 ^ s2 

 Significand M:  M1 * M2 

 Exponent E:  E1 + E2 

 

 Fixing 
 If M ≥ 2, shift M right, increment E  

 If E out of range, overflow  

 Round M to fit frac precision 

 

 Implementation 
 Biggest chore is multiplying significands 

24 



University of Washington 

Floating Point Addition 

 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 

Assume E1 > E2 

 

 Exact Result: (–1)s M  2E 
 Sign s, significand M:  

 Result of signed align & add 

 Exponent E:  E1 

 

 Fixing 
 If M ≥ 2, shift M right, increment E  

 if M < 1, shift M left k positions, decrement E by k 

 Overflow if E out of range 

 Round M to fit frac precision 

(–1)s1 M1  

(–1)s2 M2  

E1–E2 

+ 

(–1)s M 
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Hmm… if we round at every operation… 
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Mathematical Properties of FP Operations 

 Not really associative or distributive due to rounding 

 Infinities and NaNs cause issues (e.g., no additive inverse) 

 Overflow and infinity 
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Floating Point in C 
 C Guarantees Two Levels 

float single precision 

double double precision 

 

 Conversions/Casting 
 Casting between int, float, and double changes bit representation 

  Double/float → int 

 Truncates fractional part 

 Like rounding toward zero 

 Not defined when out of range or NaN: Generally sets to TMin 

  int → double 

 Exact conversion, as long as int has ≤ 53 bit word size 

  int → float 

 Will round according to rounding mode 
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Memory Referencing Bug (Revisited) 
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double fun(int i) 

{ 

  volatile double d[1] = {3.14}; 

  volatile long int a[2]; 

  a[i] = 1073741824; /* Possibly out of bounds */ 

  return d[0]; 

} 

fun(0)  –> 3.14 

fun(1)  –> 3.14 

fun(2)  –> 3.1399998664856 

fun(3)  –> 2.00000061035156 

fun(4)  –> 3.14, then segmentation fault 

Saved State 

d7 … d4 

d3 … d0 

a[1] 

a[0] 0 

1 

2 

3 

4 

Location accessed by 

fun(i) 

Explanation: 
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Representing 3.14 as a Double FP Number 

 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000 

 3.14 = 11.0010 0011 1101 0111 0000 1010 000… 

 (–1)s M  2E 

 S = 0  encoded as  0 

 M = 1.1001 0001 1110 1011 1000 0101 000…. (leading 1 left out) 

 E = 1  encoded as 1024 (with bias) 

30 

s exp (11) frac (first 20 bits) 

0   100 0000 0000     1001 0001 1110 1011 1000       

0101 0000 … 

frac (another 32 bits) 
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Memory Referencing Bug (Revisited) 
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double fun(int i) 

{ 

  volatile double d[1] = {3.14}; 

  volatile long int a[2]; 

  a[i] = 1073741824; /* Possibly out of bounds */ 

  return d[0]; 

} 

fun(0)  –> 3.14 

fun(1)  –> 3.14 

fun(2)  –> 3.1399998664856 

fun(3)  –> 2.00000061035156 

fun(4)  –> 3.14, then segmentation fault 

0 

1 

2 

3 

4 

Location  

accessed  

by fun(i) 

d7 … d4 

d3 … d0 

a[1] 

Saved State 

a[0] 

0100 0000 0000 1001 0001 1110 1011 1000       

0101 0000 … 0100 0000 0000 0000 0000 0000 0000 0000 

0100 0000 0000 0000 0000 0000 0000 0000 



University of Washington 

Summary 

 IEEE Floating Point has clear mathematical  properties 

 Represents numbers of form M x 2E 

 One can reason about operations independent of 
implementation 
 As if computed with perfect precision and then rounded 

 Not the same as real arithmetic 
 Violates associativity/distributivity 

 Makes life difficult for compilers & serious numerical applications 
programmers 
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