
University of Washington 

Today Topics: Floating Point 

 Background: Fractional binary numbers 

 IEEE floating point standard: Definition 

 Example and properties 

 Rounding, addition, multiplication 

 Floating point in C 

 Summary 

1 



University of Washington 

Fractional binary numbers 

 What is 1011.101? 

2 



University of Washington 

• • • 
b–1 . 

Fractional Binary Numbers 

 Representation 
 Bits to right of “binary point” represent fractional powers of 2 

 Represents rational number: 

bi bi–1 b2 b1 b0 b–2 b–3 b–j • • • • • • 
1 
2 
4 

2i–1
 

2i
 

• • • 

1/2 
1/4 
1/8 

2–j 

bk  2
k

k   j

i



3 



University of Washington 

Fractional Binary Numbers: Examples 

 Value Representation 
5 and 3/4  

2 and 7/8  

63/64  

 

 Observations 
 Divide by 2 by shifting right 

 Multiply by 2 by shifting left 

 Numbers of form 0.111111…2 are just below 1.0 

 1/2 + 1/4 + 1/8 + … + 1/2i + …  1.0 

 Use notation 1.0 –  

101.112 

10.1112 

0.1111112 

4 



University of Washington 

Representable Numbers 

 Limitation 
 Can only exactly represent numbers of the form x/2k 

 Other rational numbers have repeating bit representations 

 

 Value Representation 
1/3 0.0101010101[01]…2 

1/5 0.001100110011[0011]…2 

1/10 0.0001100110011[0011]…2 

 

5 



University of Washington 

IEEE Floating Point 

 IEEE Standard 754 
 Established in 1985 as uniform standard for floating point arithmetic 

 Before that, many idiosyncratic formats 

 Supported by all major CPUs 

 

 Driven by numerical concerns 
 Nice standards for rounding, overflow, underflow 

 Hard to make fast in hardware 

 Numerical analysts predominated over hardware designers in 
defining standard 

6 



University of Washington 

 Numerical Form:  
   (–1)s M  2E 

 Sign bit s determines whether number is negative or positive 

 Significand (mantissa) M  normally a fractional value in range [1.0,2.0). 

 Exponent E weights value by power of two 

 

 Encoding 
 MSB s is sign bit s 

 frac field encodes M (but is not equal to M) 

 exp field encodes E (but is not equal to E) 

Floating Point Representation 

s exp frac 

7 



University of Washington 

Precisions 

 Single precision: 32 bits 

 

 

 

 Double precision: 64 bits 

 

 

 

 Extended precision: 80 bits (Intel only) 

s exp frac 

s exp frac 

s exp frac 

1 8 23 

1 11 52 

1 15 63 or 64 

8 



University of Washington 

Normalized Values 

 Condition: exp  000…0 and exp  111…1 

 

 Exponent coded as biased value: exp  =  E + Bias 
exp is an unsigned value ranging from 1 to 2e-2 

 Allows negative values for E ( = exp – Bias) 

Bias = 2e-1 - 1, where e is number of exponent bits (bits in exp) 

 Single precision: 127 (exp: 1…254, E: -126…127) 

 Double precision: 1023 (exp: 1…2046, E: -1022…1023) 

 

 Significand coded with implied leading 1: M  =  1.xxx…x2 

  xxx…x: bits of frac 

 Minimum when 000…0 (M = 1.0) 

 Maximum when 111…1 (M = 2.0 – ) 

 Get extra leading bit for “free” 

9 



University of Washington 

Normalized Encoding Example 

 Value: Float F = 12345.0; 

 1234510  = 110000001110012    

                     = 1.10000001110012 x 213 

 

 Significand 
M  =  1.10000001110012 

frac =    100000011100100000000002 

 

 Exponent 
E   =  13 

Bias  =  127 

exp  =  140  = 100011002 
 

 Result: 
 

0 10001100 10000001110010000000000  
 s exp frac 

10 



University of Washington 

Denormalized Values 

 Condition: exp = 000…0 

 

 Exponent value: E = exp – Bias + 1 (instead of E = exp – Bias) 

 Significand coded with implied leading 0: M = 0.xxx…x2 

 xxx…x: bits of frac 

 Cases 
  exp = 000…0, frac = 000…0 

 Represents value 0 

 Note distinct values: +0 and –0 (why?) 

 exp = 000…0, frac  000…0 

 Numbers very close to 0.0 

 Lose precision as get smaller 

 Equispaced 

11 



University of Washington 

Special Values 

 Condition: exp = 111…1 

 

 Case: exp = 111…1, frac = 000…0 

 Represents value(infinity) 

 Operation that overflows 

 Both positive and negative 

 E.g., 1.0/0.0 = 1.0/0.0 = +,  1.0/0.0 = 1.0/0.0 =  

 

 Case: exp = 111…1, frac  000…0 

 Not-a-Number (NaN) 

 Represents case when no numeric value can be determined 

 E.g., sqrt(–1), ,*0

12 



University of Washington 

Visualization: Floating Point Encodings 

+

0 

+Denorm +Normalized -Denorm -Normalized 

+0 
NaN NaN 

13 



University of Washington 

Tiny Floating Point Example 

 8-bit Floating Point Representation 
 the sign bit is in the most significant bit. 

 the next four bits are the exponent, with a bias of 7. 

 the last three bits are the frac 

 

 Same general form as IEEE Format 
 normalized, denormalized 

 representation of 0, NaN, infinity 

s exp frac 

1 4 3 

14 



University of Washington 

Dynamic Range (Positive Only) 
s exp  frac E Value  

0 0000 000 -6 0 

0 0000 001 -6 1/8*1/64 = 1/512 

0 0000 010 -6 2/8*1/64 = 2/512 

… 

0 0000 110 -6 6/8*1/64 = 6/512 

0 0000 111 -6 7/8*1/64 = 7/512 

0 0001 000 -6 8/8*1/64 = 8/512 

0 0001 001   -6 9/8*1/64 = 9/512 

… 

0 0110 110 -1 14/8*1/2 = 14/16 

0 0110 111 -1 15/8*1/2 = 15/16 

0 0111 000 0 8/8*1    = 1 

0 0111 001 0 9/8*1    = 9/8 

0 0111 010 0 10/8*1   = 10/8 

… 

0 1110 110 7 14/8*128 = 224 

0 1110 111 7 15/8*128 = 240 

0 1111 000 n/a inf 

closest to zero 

largest denorm 
smallest norm 

closest to 1 below 

closest to 1 above 

largest norm 

Denormalized 
numbers 

Normalized 
numbers 

15 



University of Washington 

Distribution of Values 

 6-bit IEEE-like format 
 e = 3 exponent bits 

 f = 2 fraction bits 

 Bias is 23-1-1 = 3 

 

 Notice how the distribution gets denser toward zero.  

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

s exp frac 

1 3 2 

16 



University of Washington 

Distribution of Values (close-up view) 

 6-bit IEEE-like format 
 e = 3 exponent bits 

 f = 2 fraction bits 

 Bias is 3 

 

 

 

 

 

 

 

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

s exp frac 

1 3 2 

17 



University of Washington 

Interesting Numbers 

 Description exp frac Numeric Value 

 Zero 00…00 00…00 0.0 

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} * 2– {126,1022} 

 Single  1.4 * 10–45 

 Double  4.9 * 10–324 

 Largest Denormalized 00…00 11…11 (1.0 – ) * 2– {126,1022} 

 Single  1.18 * 10–38 

 Double  2.2 * 10–308 

 Smallest Pos. Norm. 00…01 00…00 1.0 * 2– {126,1022} 

 Just larger than largest denormalized 

 One 01…11 00…00 1.0 

  Largest Normalized 11…10 11…11 (2.0 – ) * 2{127,1023} 

 Single  3.4 * 1038 

 Double  1.8 * 10308 

{single,double} 

18 



University of Washington 

Special Properties of Encoding 

 Floating point zero (0+) exactly the same bits as integer zero 
 All bits = 0 

 

 Can (Almost) Use Unsigned Integer Comparison 
 Must first compare sign bits 

 Must consider 0- = 0+ = 0 

 NaNs problematic 

 Will be greater than any other values 

 What should comparison yield? 

  Otherwise OK 

 Denorm vs. normalized 

 Normalized vs. infinity 

19 



University of Washington 

Floating Point Operations: Basic Idea 

 x +f y = Round(x + y) 

 

 x *f y = Round(x * y) 

 

 Basic idea 
 First compute exact result 

 Make it fit into desired precision 

 Possibly overflow if exponent too large 

 Possibly round to fit into frac 

 

 

20 



University of Washington 

Rounding 

 Rounding Modes (illustrate with $ rounding) 

 
  $1.40 $1.60 $1.50 $2.50 –$1.50 

 Towards zero $1 $1 $1 $2 –$1 

 Round down (-) $1 $1 $1 $2 –$2 

 Round up (+)  $2 $2 $2 $3 –$1 

 Nearest (default) $1 $2 $2 $2 –$2 

 

 

 What are the advantages of the modes? 

21 



University of Washington 

Closer Look at Round-To-Nearest 

 Default Rounding Mode 
 Hard to get any other kind without dropping into assembly 

 All others are statistically biased 

 Sum of set of positive numbers will consistently be over- or under- 
estimated 

 

 Applying to Other Decimal Places / Bit Positions 
 When exactly halfway between two possible values 

 Round so that least significant digit is even 

 E.g., round to nearest hundredth 

1.2349999 1.23 (Less than half way) 

1.2350001 1.24 (Greater than half way) 

1.2350000 1.24 (Half way—round up) 

1.2450000 1.24 (Half way—round down) 
22 



University of Washington 

Rounding Binary Numbers 

 Binary Fractional Numbers 
 “Half way” when bits to right of rounding position = 100…2 

 

 Examples 
 Round to nearest 1/4 (2 bits right of binary point) 

Value Binary Rounded Action Rounded Value 

2 3/32 10.000112 10.002 (<1/2—down) 2 

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4 

2 7/8 10.111002 11.002 (  1/2—up) 3 

2 5/8 10.101002 10.102 (  1/2—down) 2 1/2 

 

 

23 



University of Washington 

Floating Point Multiplication 

 (–1)s1 M1  2E1
   *   (–1)s2 M2  2E2 

 Exact Result: (–1)s M  2E 
 Sign s:   s1 ^ s2 

 Significand M:  M1 * M2 

 Exponent E:  E1 + E2 

 

 Fixing 
 If M ≥ 2, shift M right, increment E  

 If E out of range, overflow  

 Round M to fit frac precision 

 

 Implementation 
 Biggest chore is multiplying significands 

24 



University of Washington 

Floating Point Addition 

 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 

Assume E1 > E2 

 

 Exact Result: (–1)s M  2E 
 Sign s, significand M:  

 Result of signed align & add 

 Exponent E:  E1 

 

 Fixing 
 If M ≥ 2, shift M right, increment E  

 if M < 1, shift M left k positions, decrement E by k 

 Overflow if E out of range 

 Round M to fit frac precision 

(–1)s1 M1  

(–1)s2 M2  

E1–E2 

+ 

(–1)s M 

25 



University of Washington 

Hmm… if we round at every operation… 

 

26 



University of Washington 

Mathematical Properties of FP Operations 

 Not really associative or distributive due to rounding 

 Infinities and NaNs cause issues (e.g., no additive inverse) 

 Overflow and infinity 
 

 

 

27 



University of Washington 

Floating Point in C 
 C Guarantees Two Levels 

float single precision 

double double precision 

 

 Conversions/Casting 
 Casting between int, float, and double changes bit representation 

  Double/float → int 

 Truncates fractional part 

 Like rounding toward zero 

 Not defined when out of range or NaN: Generally sets to TMin 

  int → double 

 Exact conversion, as long as int has ≤ 53 bit word size 

  int → float 

 Will round according to rounding mode 

 28 



University of Washington 

Memory Referencing Bug (Revisited) 

29 

double fun(int i) 

{ 

  volatile double d[1] = {3.14}; 

  volatile long int a[2]; 

  a[i] = 1073741824; /* Possibly out of bounds */ 

  return d[0]; 

} 

fun(0)  –> 3.14 

fun(1)  –> 3.14 

fun(2)  –> 3.1399998664856 

fun(3)  –> 2.00000061035156 

fun(4)  –> 3.14, then segmentation fault 

Saved State 

d7 … d4 

d3 … d0 

a[1] 

a[0] 0 

1 

2 

3 

4 

Location accessed by 

fun(i) 

Explanation: 



University of Washington 

Representing 3.14 as a Double FP Number 

 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000 

 3.14 = 11.0010 0011 1101 0111 0000 1010 000… 

 (–1)s M  2E 

 S = 0  encoded as  0 

 M = 1.1001 0001 1110 1011 1000 0101 000…. (leading 1 left out) 

 E = 1  encoded as 1024 (with bias) 

30 

s exp (11) frac (first 20 bits) 

0   100 0000 0000     1001 0001 1110 1011 1000       

0101 0000 … 

frac (another 32 bits) 



University of Washington 

Memory Referencing Bug (Revisited) 

31 

double fun(int i) 

{ 

  volatile double d[1] = {3.14}; 

  volatile long int a[2]; 

  a[i] = 1073741824; /* Possibly out of bounds */ 

  return d[0]; 

} 

fun(0)  –> 3.14 

fun(1)  –> 3.14 

fun(2)  –> 3.1399998664856 

fun(3)  –> 2.00000061035156 

fun(4)  –> 3.14, then segmentation fault 

0 

1 

2 

3 

4 

Location  

accessed  

by fun(i) 

d7 … d4 

d3 … d0 

a[1] 

Saved State 

a[0] 

0100 0000 0000 1001 0001 1110 1011 1000       

0101 0000 … 0100 0000 0000 0000 0000 0000 0000 0000 

0100 0000 0000 0000 0000 0000 0000 0000 



University of Washington 

Summary 

 IEEE Floating Point has clear mathematical  properties 

 Represents numbers of form M x 2E 

 One can reason about operations independent of 
implementation 
 As if computed with perfect precision and then rounded 

 Not the same as real arithmetic 
 Violates associativity/distributivity 

 Makes life difficult for compilers & serious numerical applications 
programmers 

32 


