
University of Washington

Instruction Set Architectures

 ISAs

 Brief history of processors and architectures

 C, assembly, machine code

 Assembly basics: registers, operands, move instructions

1

University of Washington

What should the HW/SW interface contain?

2

University of Washington

The General ISA

PC

...

Registers

Instructions

Memory

Data

CPU

University of Washington

General ISA Design Decisions

 Instructions
 What instructions are available? What do they do?

 How are then encoded?

 Registers
 How many registers are there?

 How wide are they?

 Memory
 How do you specify a memory location?

University of Washington

HW/SW Interface: Code / Compile / Run Times

Hardware

User

Program

in C

Assembler C

Compiler

.exe

File

Code Time Compile Time Run Time

5

What makes programs run fast?

University of Washington

Executing Programs Fast!

 The time required to execute a program depends on:
 The program (as written in C, for instance)

 The compiler: what set of assembler instructions it translates the C
program into

 The ISA: what set of instructions it made available to the compiler

 The hardware implementation: how much time it takes to execute an
instruction

 There is a complicated interaction among these

University of Washington

Intel x86 Processors

 Totally dominate computer market

 Evolutionary design
 Backwards compatible up until 8086, introduced in 1978

 Added more features as time goes on

 Complex instruction set computer (CISC)
 Many different instructions with many different formats

 But, only small subset encountered with Linux programs

 Hard to match performance of Reduced Instruction Set Computers (RISC)

 But, Intel has done just that!

7

University of Washington

Intel x86 Evolution: Milestones

 Name Date Transistors MHz

 8086 1978 29K 5-10
 First 16-bit processor. Basis for IBM PC & DOS

 1MB address space

 386 1985 275K 16-33

 First 32 bit processor , referred to as IA32

 Added “flat addressing”

 Capable of running Unix

 32-bit Linux/gcc uses no instructions introduced in later models

 Pentium 4F 2005 230M 2800-3800
 First 64-bit processor

 Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of “Core” line

8

University of Washington

Intel x86 Processors, contd.

 Machine Evolution
 486 1989 1.9M

 Pentium 1993 3.1M

 Pentium/MMX 1997 4.5M

 PentiumPro 1995 6.5M

 Pentium III 1999 8.2M

 Pentium 4 2001 42M

 Core 2 Duo 2006 291M

 Added Features
 Instructions to support multimedia operations

 Parallel operations on 1, 2, and 4-byte data, both integer & FP

 Instructions to enable more efficient conditional operations

 Linux/GCC Evolution
 Very limited impact on performance --- mostly came from HW.

9

University of Washington

x86 Clones: Advanced Micro Devices (AMD)

 Historically
 AMD has followed just behind Intel

 A little bit slower, a lot cheaper

 Then
 Recruited top circuit designers from Digital Equipment and other

downward trending companies

 Built Opteron: tough competitor to Pentium 4

 Developed x86-64, their own extension to 64 bits

 Recently
 Intel much quicker with dual core design

 Intel currently far ahead in performance

 em64t backwards compatible to x86-64

10

University of Washington

Intel’s 64-Bit
 Intel Attempted Radical Shift from IA32 to IA64

 Totally different architecture (Itanium)

 Executes IA32 code only as legacy

 Performance disappointing

 AMD Stepped in with Evolutionary Solution
 x86-64 (now called “AMD64”)

 Intel Felt Obligated to Focus on IA64
 Hard to admit mistake or that AMD is better

 2004: Intel Announces EM64T extension to IA32
 Extended Memory 64-bit Technology

 Almost identical to x86-64!

 Meanwhile: EM64t well introduced,
however, still often not used by OS, programs

11

University of Washington

Our Coverage in 351

 IA32
 The traditional x86

 x86-64/EM64T
 The emerging standard – we’ll just touch on its major additions

12

University of Washington

Definitions

 Architecture: (also instruction set architecture or ISA)
The parts of a processor design that one needs to understand
to write assembly code (“what is directly visible to SW”)

 Microarchitecture: Implementation of the architecture

 Architecture examples: instruction set specification, registers

 Microarchitecture examples: cache sizes and core frequency

 Example ISAs (Intel): x86, IA-32, IPF

13

University of Washington

CPU

Assembly Programmer’s View

 Programmer-Visible State

 PC: Program counter

 Address of next instruction

 Called “EIP” (IA32) or “RIP” (x86-64)

 Register file

 Heavily used program data

 Condition codes

 Store status information about most
recent arithmetic operation

 Used for conditional branching

PC Registers

Memory

Object Code
Program Data
OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

Memory
 Byte addressable array

 Code, user data, (some) OS data

 Includes stack used to support
procedures (we’ll come back to that)

University of Washington

text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc -O p1.c p2.c -o p

 Use optimizations (-O)

 Put resulting binary in file p

15

University of Washington

Compiling Into Assembly

C Code

 int sum(int x, int y)
{

 int t = x+y;

 return t;

}

Generated IA32 Assembly
 sum:
 pushl %ebp

 movl %esp,%ebp

 movl 12(%ebp),%eax

 addl 8(%ebp),%eax

 movl %ebp,%esp

 popl %ebp

 ret

Obtain with command

gcc -O -S code.c

Produces file code.s
Some compilers use single
instruction “leave”

16

University of Washington

Three Kinds of Instructions

 Perform arithmetic function on register or memory data

 Transfer data between memory and register
 Load data from memory into register

 Store register data into memory

 Transfer control (control flow)
 Unconditional jumps to/from procedures

 Conditional branches

17

University of Washington

Assembly Characteristics: Data Types

 “Integer” data of 1, 2, or 4 bytes
 Data values

 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

18

University of Washington

Code for sum
 0x401040 <sum>:
 0x55

 0x89

 0xe5

 0x8b

 0x45

 0x0c

 0x03

 0x45

 0x08

 0x89

 0xec

 0x5d

 0xc3

Object Code

 Assembler
 Translates .s into .o

 Binary encoding of each instruction

 Nearly-complete image of executable code

 Missing linkages between code in different
files

 Linker
 Resolves references between files

 Combines with static run-time libraries

 E.g., code for malloc, printf

 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 13 bytes

• Each instruction
1, 2, or 3 bytes

• Starts at address
0x401040

19

University of Washington

Machine Instruction Example
 C Code

 Add two signed integers

 Assembly
 Add 2 4-byte integers

 “Long” words in GCC parlance

 Same instruction whether signed
or unsigned

 Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

– Return function value in %eax

 Object Code
 3-byte instruction

 Stored at address 0x401046

int t = x+y;

addl 8(%ebp),%eax

0x401046: 03 45 08

Similar to expression:

 x += y

More precisely:

 int eax;

 int *ebp;

 eax += ebp[2]

20

University of Washington

Disassembled
 00401040 <_sum>:
 0: 55 push %ebp

 1: 89 e5 mov %esp,%ebp

 3: 8b 45 0c mov 0xc(%ebp),%eax

 6: 03 45 08 add 0x8(%ebp),%eax

 9: 89 ec mov %ebp,%esp

 b: 5d pop %ebp

 c: c3 ret

 d: 8d 76 00 lea 0x0(%esi),%esi

Disassembling Object Code

 Disassembler
objdump -d p

 Useful tool for examining object code

 Analyzes bit pattern of series of instructions

 Produces approximate rendition of assembly code

 Can be run on either a.out (complete executable) or .o file

21

University of Washington

Disassembled
 0x401040 <sum>: push %ebp

0x401041 <sum+1>: mov %esp,%ebp

0x401043 <sum+3>: mov 0xc(%ebp),%eax

0x401046 <sum+6>: add 0x8(%ebp),%eax

0x401049 <sum+9>: mov %ebp,%esp

0x40104b <sum+11>: pop %ebp

0x40104c <sum+12>: ret

0x40104d <sum+13>: lea 0x0(%esi),%esi

Alternate Disassembly

 Within gdb Debugger
gdb p

disassemble sum

 Disassemble procedure

x/13b sum

 Examine the 13 bytes starting at sum

Object
 0x401040:
 0x55

 0x89

 0xe5

 0x8b

 0x45

 0x0c

 0x03

 0x45

 0x08

 0x89

 0xec

 0x5d

 0xc3

22

University of Washington

What Can be Disassembled?

 Anything that can be interpreted as executable code

 Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

23

University of Washington

Integer Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source

index

destination

index

stack

pointer

base

pointer

Origin
(mostly obsolete)

24

