
University of Washington

Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimizations that consider caches

1

University of Washington

How will execution time grow with

SIZE?

int array[SIZE];

int A = 0;

for (int i = 0 ; i < 200000 ; ++ i) {

 for (int j = 0 ; j < SIZE ; ++ j) {

 A += array[j];

 }

}

SIZE

TIME

Plot

2

University of Washington

Actual Data

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

Series1

3

University of Washington

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Buff…

4

University of Washington

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: Caches

5

University of Washington

Cache

 English definition: a hidden storage space for provisions,
weapons, and/or treasures

 CSE Definition: computer memory with short access time
used for the storage of frequently or recently used
instructions or data (i-cache and d-cache)

more generally,

used to optimize data transfers between system elements
with different characteristics (network interface cache, I/O
cache, etc.)

6

University of Washington

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

7

University of Washington

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Request: 14

8

University of Washington

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

9

University of Washington

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

Block b is in cache:
Hit!

10

University of Washington

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

11

University of Washington

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

12

University of Washington

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

13

University of Washington

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

14

12

University of Washington

Cache Performance Metrics

 Miss Rate
 Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

 Typical numbers (in percentages):

 3-10% for L1

 can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
 Time to deliver a line in the cache to the processor

 includes time to determine whether the line is in the cache

 Typical numbers:

 1-2 clock cycle for L1

 5-20 clock cycles for L2

 Miss Penalty
 Additional time required because of a miss

 typically 50-200 cycles for main memory (trend: increasing!)
15

University of Washington

Lets think about those numbers

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

16

University of Washington

Lets think about those numbers

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

 Average access time:

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”

17

University of Washington

Types of Cache Misses

 Cold (compulsory) miss
 Occurs on first access to a block

18

University of Washington

Types of Cache Misses

 Cold (compulsory) miss
 Occurs on first access to a block

 Conflict miss
 Most hardware caches limit blocks to a small subset (sometimes just one)

of the available cache slots

 if one (e.g., block i must be placed in slot (i mod size)), direct-mapped

 if more than one, n-way set-associative (where n is a power of 2)

 Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time=

19

University of Washington

Types of Cache Misses

 Cold (compulsory) miss
 Occurs on first access to a block

 Conflict miss
 Most hardware caches limit blocks to a small subset (sometimes just one)

of the available cache slots

 if one (e.g., block i must be placed in slot (i mod size)), direct-mapped

 if more than one, n-way set-associative (where n is a power of 2)

 Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

 Capacity miss
 Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit)

20

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

21

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Why is this important?

block

22

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality?

block

23

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
 Items with nearby addresses tend

to be referenced close together in time

 How do caches take advantage of this?

block

block

24

University of Washington

Example: Locality?

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

25

University of Washington

Example: Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

26

University of Washington

Example: Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:
 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

27

University of Washington

Example: Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:
 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

 Being able to assess the locality of code is a crucial skill
for a programmer

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

28

University of Washington

Locality Example #1

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

29

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

University of Washington

Locality Example #1

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

30

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

 1: a[0][0]

 2: a[0][1]

 3: a[0][2]

 4: a[0][3]

 5: a[1][0]

 6: a[1][1]

 7: a[1][2]

 8: a[1][3]

 9: a[2][0]

10: a[2][1]

11: a[2][2]

12: a[2][3]

stride-1

University of Washington

Locality Example #2

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

31

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

University of Washington

Locality Example #2

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

32

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

 1: a[0][0]

 2: a[1][0]

 3: a[2][0]

 4: a[0][1]

 5: a[1][1]

 6: a[2][1]

 7: a[0][2]

 8: a[1][2]

 9: a[2][2]

10: a[0][3]

11: a[1][3]

12: a[2][3]

stride-N

University of Washington

Locality Example #3

int sum_array_3d(int a[M][N][N])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

 What is wrong with this code?

 How can it be fixed?

33

University of Washington

Memory Hierarchies

 Some fundamental and enduring properties of hardware and
software systems:
 Faster storage technologies almost always cost more per byte and

have lower capacity

 The gaps between memory technology speeds are widening

 True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

 Well-written programs tend to exhibit good locality

 These properties complement each other beautifully

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

34

University of Washington

An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

35

University of Washington

Examples of Caching in the Hierarchy

Hardware 0 On-Chip TLB Address translations TLB

Web browser 10,000,000 Local disk Web pages Browser cache

Web cache

Network cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-byte words

What is Cached?

Web server 1,000,000,000 Remote server disks

OS 100 Main memory

Hardware 1 On-Chip L1

Hardware 10 Off-Chip L2

File system client 10,000,000 Local disk

Hardware+OS 100 Main memory

Compiler 0 CPU core

Managed By
Latency
(cycles)

Where is it Cached?

36

University of Washington

Memory Hierarchy: Core 2 Duo

Disk

Main
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput:

Latency: 100 cycles 14 cycles 3 cycles millions

~4 MB

32 KB

~4 GB ~500 GB

Not drawn to scale

L1/L2 cache: 64 B blocks

37

University of Washington

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes data block per cache line (the data)

cache size:
S x E x B data bytes

38

University of Washington

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes data block per cache line (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

39

University of Washington

Example: Direct-Mapped Cache (E = 1)

S = 2s sets

Direct-mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

find set

40

University of Washington

Example: Direct-Mapped Cache (E = 1)
Direct-mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

match: assume yes = hit valid? +

block offset

tag

41

University of Washington

Example: Direct-Mapped Cache (E = 1)
Direct-mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

match: assume yes = hit valid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

42

University of Washington

Example (for E =1)
int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

32 B = 4 doubles

Assume: cold (empty) cache
3 bits for set, 5 bits for byte
 aa.…aaxxx xyy yy000

int sum_array_cols(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; j < 16; j++)

 for (i = 0; i < 16; i++)

 sum += a[i][j];

 return sum;

}

Assume sum, i, j in registers
Address of an aligned element
of a: aa.…aaxxxxyyyy000

43

0,0 0,1 0,2 0,3

0,4 0,5 0,6 0,7

0,8 0,9 0,a 0,b

0,c 0,d 0,e 0,f

1,0 1,1 1,2 1,3

1,4 1,5 1,6 1,7

1,8 1,9 1,a 1,b

1,c 1,d 1,e 1,f

32 B = 4 doubles

4 misses per row
4*16 = 64 misses

every access a miss
16*16 = 256 misses

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

University of Washington

Example (for E = 1)
float dotprod(float x[8], float y[8])

{

 float sum = 0;

 int i;

 for (i = 0; i < 8; i++)

 sum += x[i]*y[i];

 return sum;

}

44

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] x[0] x[1] x[2] x[3]

if x and y have aligned
starting addresses,

e.g., &x[0] = 0, &y[0] = 128

if x and y have unaligned
starting addresses,

e.g., &x[0] = 0, &y[0] = 144

x[0] x[1] x[2] x[3]

y[0] y[1] y[2] y[3]

x[5] x[6] x[7] x[8]

y[5] y[6] y[7] y[8]

University of Washington

E-way Set-Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

find set

45

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

University of Washington

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

E-way Set-Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

compare both

valid? + match: yes = hit

block offset

tag

46

University of Washington

0

1

2

7

tag

v

3

6

5

4

0

1

2

7

tag

v

3

6

5

4

E-way Set-Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

match both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

47

University of Washington

Example (for E = 2)
float dotprod(float x[8], float y[8])

{

 float sum = 0;

 int i;

 for (i = 0; i < 8; i++)

 sum += x[i]*y[i];

 return sum;

}

48

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] if x and y have aligned
starting addresses,

e.g., &x[0] = 0, &y[0] = 128
still can fit both

because 2 lines in each set

x[4] x[5] x[6] x[7] y[4] y[5] y[6] y[7]

University of Washington

Fully Set-Associative Caches (S = 1)

 All lines in one single set, S = 1
 E = C / B, where C is total cache size

 S = 1 = (C / B) / E

 Direct-mapped caches have E = 1
 S = (C / B) / E = C / B

 Tags are more expensive in associative caches
 Fully-associative cache, C / B tag comparators

 Direct-mapped cache, 1 tag comparator

 In general, E-way set-associative caches, E tag comparators

 Tag size, assuming m address bits (m = 32 for IA32)
 m – log2S – log2B

49

University of Washington

Typical Memory Hierarchy (Intel Core i7)

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

16-way associative in Intel Core i7

off-chip L2
cache (SRAM)

8-way associative in Intel Core i7

CPU registers (optimized by complier)

8-way associative in Intel Core i7

L0:

L1:

L2:

L3:

L4:

L6:

Smaller,
faster,
costlier
per byte

50

off-chip cache L3 shared
by multiple cores (SRAM)

L5:

University of Washington

What about writes?

 Multiple copies of data exist:
 L1, L2, Main Memory, Disk

 What to do on a write-hit?
 Write-through (write immediately to memory)

 Write-back (defer write to memory until replacement of line)

 Need a dirty bit (line different from memory or not)

 What to do on a write-miss?
 Write-allocate (load into cache, update line in cache)

 Good if more writes to the location follow

 No-write-allocate (writes immediately to memory)

 Typical
 Write-through + No-write-allocate

 Write-back + Write-allocate

 51

University of Washington

Software Caches are More Flexible

 Examples

 File system buffer caches, web browser caches, etc.

 Some design differences

 Almost always fully-associative

 so, no placement restrictions

 index structures like hash tables are common (for placement)

 Often use complex replacement policies

 misses are very expensive when disk or network involved

 worth thousands of cycles to avoid them

 Not necessarily constrained to single “block” transfers

 may fetch or write-back in larger units, opportunistically

52

University of Washington

The Memory Mountain

53

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1

3

s
1

5

8m
 2m

51
2k

12
8k

 32
k

8k
 2k

0

200

400

600

800

1000

1200

Read throughput (MB/s)

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified L2 cache L1

L2

Mem

University of Washington

Optimizations for the Memory Hierarchy

 Write code that has locality
 Spatial: access data contiguously

 Temporal: make sure access to the same data is not too far apart in
time

 How to achieve?
 Proper choice of algorithm

 Loop transformations

 Cache versus register-level optimization:
 In both cases locality desirable

 Register space much smaller
+ requires scalar replacement to exploit temporal locality

 Register level optimizations include exhibiting instruction level
parallelism (conflicts with locality)

54

University of Washington

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i*n + j] += a[i*n + k]*b[k*n + j];

}

55

University of Washington

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 First iteration:
 n/8 + n = 9n/8 misses

(omitting matrix c)

 Afterwards in cache:
(schematic)

* =

n

* =

8 wide
56

University of Washington

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Other iterations:
 Again:

n/8 + n = 9n/8 misses
(omitting matrix c)

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

* =

8 wide

57

University of Washington

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=B)

 for (j = 0; j < n; j+=B)

 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */

 for (i1 = i; i1 < i+B; i++)

 for (j1 = j; j1 < j+B; j++)

 for (k1 = k; k1 < k+B; k++)

 c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Block size B x B
58

University of Washington

Cache Miss Analysis
 Assume:

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Four blocks fit into cache: 4B2 < C

 First (block) iteration:
 B2/8 misses for each block

 2n/B * B2/8 = nB/4
(omitting matrix c)

 Afterwards in cache
(schematic)

* =

* =

Block size B x B

n/B blocks

59

University of Washington

Cache Miss Analysis
 Assume:

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 Other (block) iterations:
 Same as first iteration

 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

* =

Block size B x B

n/B blocks

60

University of Washington

Summary

 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 If B = 8 difference is 4 * 8 * 9 / 8 = 36x

 If B = 16 difference is 4 * 16 * 9 / 8 = 72x

 Suggests largest possible block size B, but limit 4B2 < C!
(can possibly be relaxed a bit, but there is a limit for B)

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array elements used O(n) times!

 But program has to be written properly

61

