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Today 

 Memory hierarchy, caches, locality 

 Cache organization 

 Program optimizations that consider caches 
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How will execution time grow with 

SIZE?  

int array[SIZE];   

int A = 0;   

 

for (int i = 0 ; i < 200000 ; ++ i) {          

 for (int j = 0 ; j < SIZE ; ++ j) {                 

  A += array[j];          

 }   

} 

SIZE 

TIME 

Plot 

2 



University of Washington 
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Problem: Processor-Memory Bottleneck 

Main 
Memory 

CPU Reg 

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower 

Core 2 Duo: 
Can process at least 
256 Bytes/cycle 

Core 2 Duo: 
Bandwidth 
2 Bytes/cycle 
Latency 
100 cycles 

Buff…  
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Problem: Processor-Memory Bottleneck 

Main 
Memory 

CPU Reg 

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower 

Core 2 Duo: 
Can process at least 
256 Bytes/cycle 

Core 2 Duo: 
Bandwidth 
2 Bytes/cycle 
Latency 
100 cycles 

Solution: Caches 
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Cache 

 English definition: a hidden storage space for provisions, 
weapons, and/or treasures 
 

 CSE Definition: computer memory with short access time 
used for the storage of frequently or recently used 
instructions or data (i-cache and d-cache) 
 
more generally, 
 
used to optimize data transfers between system elements 
with different characteristics (network interface cache, I/O 
cache, etc.) 
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General Cache Mechanics 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 
Larger, slower, cheaper memory 
viewed as partitioned into “blocks” 

Data is copied in block-sized 
transfer units 

Smaller, faster, more expensive 
memory caches a  subset of 
the blocks 
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General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Request: 14 
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General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 
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General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 

Block b is in cache: 
Hit! 
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General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 
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General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 
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General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 
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General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 

Block b is stored in cache 
• Placement policy: 

determines where b goes 
•Replacement policy: 

determines which block 
gets evicted (victim) 

14 
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Cache Performance Metrics 

 Miss Rate 
 Fraction of memory references not found in cache (misses / accesses) 

= 1 – hit rate 

 Typical numbers (in percentages): 

 3-10% for L1 

 can be quite small (e.g., < 1%) for L2, depending on size, etc. 

 Hit Time 
 Time to deliver a line in the cache to the processor 

 includes time to determine whether the line is in the cache 

 Typical numbers: 

 1-2 clock cycle for L1 

 5-20 clock cycles for L2 

 Miss Penalty 
 Additional time required because of a miss 

 typically 50-200 cycles for main memory (trend: increasing!) 
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Lets think about those numbers 

 Huge difference between a hit and a miss 
 Could be 100x, if just L1 and main memory 

 

 Would you believe 99% hits is twice as good as 97%? 
 Consider:  

cache hit time of 1 cycle 
miss penalty of 100 cycles 
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Lets think about those numbers 

 Huge difference between a hit and a miss 
 Could be 100x, if just L1 and main memory 

 

 Would you believe 99% hits is twice as good as 97%? 
 Consider:  

cache hit time of 1 cycle 
miss penalty of 100 cycles 

 

 Average access time: 

  97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles 

  99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles 

 

 This is why “miss rate” is used instead of “hit rate” 
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Types of Cache Misses 

 Cold (compulsory) miss 
 Occurs on first access to a block 

18 



University of Washington 

Types of Cache Misses 

 Cold (compulsory) miss 
 Occurs on first access to a block 

 Conflict miss 
 Most hardware caches limit blocks to a small subset (sometimes just one) 

of the available cache slots 

 if one (e.g., block i must be placed in slot (i mod size)), direct-mapped 

 if more than one, n-way set-associative (where n is a power of 2) 

 Conflict misses occur when the cache is large enough, but multiple data 
objects all map to the same slot 

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time= 
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Types of Cache Misses 

 Cold (compulsory) miss 
 Occurs on first access to a block 

 Conflict miss 
 Most hardware caches limit blocks to a small subset (sometimes just one) 

of the available cache slots 

 if one (e.g., block i must be placed in slot (i mod size)), direct-mapped 

 if more than one, n-way set-associative (where n is a power of 2) 

 Conflict misses occur when the cache is large enough, but multiple data 
objects all map to the same slot 

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time 

 Capacity miss 
 Occurs when the set of active cache blocks (the working set)  

is larger than the cache (just won’t fit) 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 

 Why is this important? 

 

 

 

 

block 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 

 Spatial locality?   

 

 

block 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 Spatial locality:   
 Items with nearby addresses tend  

to be referenced close together in time 

 

 How do caches take advantage of this? 

 

 

 

block 

block 
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Example: Locality? 

sum = 0; 

for (i = 0; i < n; i++) 

   sum += a[i]; 

return sum; 
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Example: Locality? 

 Data: 
 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

sum = 0; 

for (i = 0; i < n; i++) 

   sum += a[i]; 

return sum; 
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Example: Locality? 

 Data: 
 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

 Instructions: 
 Temporal: cycle through loop repeatedly 

 Spatial: reference instructions in sequence 

 

sum = 0; 

for (i = 0; i < n; i++) 

   sum += a[i]; 

return sum; 
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Example: Locality? 

 Data: 
 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

 Instructions: 
 Temporal: cycle through loop repeatedly 

 Spatial: reference instructions in sequence 

 

 Being able to assess the locality of code is a crucial skill 
for a programmer 
 

sum = 0; 

for (i = 0; i < n; i++) 

   sum += a[i]; 

return sum; 
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Locality Example #1 

int sum_array_rows(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            sum += a[i][j]; 

    return sum; 

} 
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a[1][0] a[1][1] a[1][2] a[1][3] 
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Locality Example #1 

int sum_array_rows(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            sum += a[i][j]; 

    return sum; 

} 

30 

a[0][0] a[0][1] a[0][2] a[0][3] 

a[1][0] a[1][1] a[1][2] a[1][3] 

a[2][0] a[2][1] a[2][2] a[2][3] 

  1: a[0][0] 

  2: a[0][1] 

  3: a[0][2] 

  4: a[0][3] 

  5: a[1][0] 

  6: a[1][1] 

  7: a[1][2] 

  8: a[1][3] 

  9: a[2][0] 

10: a[2][1] 

11: a[2][2] 

12: a[2][3] 

stride-1 
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Locality Example #2 

int sum_array_cols(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (j = 0; j < N; j++) 

        for (i = 0; i < M; i++) 

            sum += a[i][j]; 

    return sum; 

} 
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a[1][0] a[1][1] a[1][2] a[1][3] 
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Locality Example #2 

int sum_array_cols(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (j = 0; j < N; j++) 

        for (i = 0; i < M; i++) 

            sum += a[i][j]; 

    return sum; 

} 
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a[0][0] a[0][1] a[0][2] a[0][3] 

a[1][0] a[1][1] a[1][2] a[1][3] 

a[2][0] a[2][1] a[2][2] a[2][3] 

  1: a[0][0] 

  2: a[1][0] 

  3: a[2][0] 

  4: a[0][1] 

  5: a[1][1] 

  6: a[2][1] 

  7: a[0][2] 

  8: a[1][2] 

  9: a[2][2] 

10: a[0][3] 

11: a[1][3] 

12: a[2][3] 

stride-N 
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Locality Example #3 

int sum_array_3d(int a[M][N][N]) 

{ 

    int i, j, k, sum = 0; 

 

    for (i = 0; i < N; i++) 

        for (j = 0; j < N; j++) 

            for (k = 0; k < M; k++) 

                sum += a[k][i][j]; 

    return sum; 

} 

 What is wrong with this code? 

 How can it be fixed? 

33 



University of Washington 

Memory Hierarchies 

 Some fundamental and enduring properties of hardware and 
software systems: 
 Faster storage technologies almost always cost more per byte and 

have lower capacity 

 The gaps between memory technology speeds are widening 

 True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc. 

 Well-written programs tend to exhibit good locality 
 

 These properties complement each other beautifully 
 

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy 
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An Example Memory Hierarchy 

registers 

on-chip L1 
cache (SRAM) 

main memory 
(DRAM) 

local secondary storage 
(local disks) 

Larger,   
slower,  
cheaper  
per byte 

remote secondary storage 
(distributed file systems, web servers) 

Local disks hold files 
retrieved from disks on 
remote network servers 

Main memory holds disk blocks 
retrieved from local disks 

off-chip L2 
cache (SRAM) 

L1 cache holds cache lines retrieved from L2 cache 

CPU registers hold words retrieved from L1 cache 

L2 cache holds cache lines retrieved 
from main memory 

L0: 

L1: 

L2: 

L3: 

L4: 

L5: 

Smaller, 
faster, 
costlier 
per byte 
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Examples of Caching in the Hierarchy 

Hardware 0 On-Chip TLB Address translations TLB 

Web browser 10,000,000 Local disk Web pages Browser cache 

Web cache 

Network cache 

Buffer cache 

Virtual Memory 

L2 cache 

L1 cache 

Registers 

Cache Type 

Web pages 

Parts of files 

Parts of files 

4-KB page 

64-bytes block 

64-bytes block 

4-byte words 

What is Cached? 

Web server 1,000,000,000 Remote server disks 

OS 100 Main memory 

Hardware 1 On-Chip L1 

Hardware 10 Off-Chip L2 

File system client 10,000,000 Local disk 

Hardware+OS 100 Main memory 

Compiler 0 CPU core 

Managed By 
Latency 
(cycles) 

Where is it Cached? 
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Memory Hierarchy: Core 2 Duo 

Disk 

Main 
Memory 

L2 
unified 
cache 

L1  
I-cache 

L1  
D-cache 

CPU Reg 

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput: 

Latency: 100 cycles 14 cycles 3 cycles millions 

~4 MB 

32 KB 

~4 GB ~500 GB 

Not drawn to scale  

L1/L2 cache: 64 B blocks 
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General Cache Organization (S, E, B) 

E = 2e lines per set 

S = 2s sets 

set 

line 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes data block per cache line (the data) 

cache size: 
S x E x B  data bytes 
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Cache Read 

E = 2e lines per set 

S = 2s sets 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes data block per cache line (the data) 

t bits s bits b bits 

Address of word: 

tag set 
index 

block 
offset 

data begins at this offset 

• Locate set 
• Check if any line in set 

has matching tag 
• Yes + line valid: hit 
• Locate data starting 

at offset 
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Example: Direct-Mapped Cache (E = 1) 

S = 2s sets 

Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

find set 
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Example: Direct-Mapped Cache (E = 1) 
Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match: assume yes = hit valid?   + 

block offset 

tag 
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Example: Direct-Mapped Cache (E = 1) 
Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match: assume yes = hit valid?   + 

int (4 Bytes) is here 

block offset 

No match: old line is evicted and replaced 
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Example (for E =1) 
int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

32 B = 4 doubles 

Assume: cold (empty) cache 
3 bits for set, 5 bits for byte 
         aa.…aaxxx  xyy  yy000 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; j < 16; j++) 

        for (i = 0; i < 16; i++) 

            sum += a[i][j]; 

    return sum; 

} 

Assume sum, i, j in registers 
Address of an aligned element 
of a:  aa.…aaxxxxyyyy000 
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0,0 0,1 0,2 0,3 

0,4 0,5 0,6 0,7 

0,8 0,9 0,a 0,b 

0,c 0,d 0,e 0,f 

1,0 1,1 1,2 1,3 

1,4 1,5 1,6 1,7 

1,8 1,9 1,a 1,b 

1,c 1,d 1,e 1,f 

32 B = 4 doubles 

4 misses per row 
4*16 = 64 misses 

every access a miss 
16*16 = 256 misses 

0,0 0,1 0,2 0,3 

1,0 1,1 1,2 1,3 

2,0 2,1 2,2 2,3 

3,0 3,1 3,2 3,3 

4,0 4,1 4,2 4,3 



University of Washington 

Example (for E = 1) 
float dotprod(float x[8], float y[8]) 

{ 

    float sum = 0; 

    int i; 

 

    for (i = 0; i < 8; i++) 

 sum += x[i]*y[i]; 

    return sum; 

} 
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x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] x[0] x[1] x[2] x[3] 

if x and y have aligned  
starting addresses,  

e.g., &x[0] = 0, &y[0] = 128 

if x and y have unaligned  
starting addresses,  

e.g., &x[0] = 0, &y[0] = 144 

x[0] x[1] x[2] x[3] 

y[0] y[1] y[2] y[3] 

x[5] x[6] x[7] x[8] 

y[5] y[6] y[7] y[8] 
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E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

find set 

45 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 



University of Washington 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 
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5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

compare both 

valid?  +  match: yes = hit 

block offset 

tag 
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0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

 
0 

 
1 

 
2 

 
7 

tag 
 
v 

 
3 

 
6 

 
5 

 
4 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

match both 

valid?  +  match: yes = hit 

block offset 

short int (2 Bytes) is here 

No match:  
• One line in set is selected for eviction and replacement 
• Replacement policies: random, least recently used (LRU), … 
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Example (for E = 2) 
float dotprod(float x[8], float y[8]) 

{ 

    float sum = 0; 

    int i; 

 

    for (i = 0; i < 8; i++) 

 sum += x[i]*y[i]; 

    return sum; 

} 
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x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3] if x and y have aligned  
starting addresses,  

e.g., &x[0] = 0, &y[0] = 128 
still can fit both 

because 2 lines in each set 

x[4] x[5] x[6] x[7] y[4] y[5] y[6] y[7] 
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Fully Set-Associative Caches (S = 1) 

 All lines in one single set, S = 1 
 E = C / B, where C is total cache size 

 S = 1 = ( C / B ) / E 
 

 Direct-mapped caches have E = 1 
 S = ( C / B ) / E  = C / B 

 Tags are more expensive in associative caches 
 Fully-associative cache, C / B tag comparators 

 Direct-mapped cache, 1 tag comparator 

 In general, E-way set-associative caches, E tag comparators 

 Tag size, assuming m address bits (m = 32 for IA32) 
 m – log2S – log2B 
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Typical Memory Hierarchy (Intel Core i7) 

registers 

on-chip L1 
cache (SRAM) 

main memory 
(DRAM) 

local secondary storage 
(local disks) 

Larger,   
slower,  
cheaper  
per byte 

remote secondary storage 
(distributed file systems, web servers) 

16-way associative in Intel Core i7 

off-chip L2 
cache (SRAM) 

8-way associative in Intel Core i7 

CPU registers (optimized by complier) 

8-way associative in Intel Core i7 

L0: 

L1: 

L2: 

L3: 

L4: 

L6: 

Smaller, 
faster, 
costlier 
per byte 
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off-chip cache L3 shared  
by multiple cores (SRAM) 

L5: 
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What about writes? 

 Multiple copies of data exist: 
 L1, L2, Main Memory, Disk 

 What to do on a write-hit? 
 Write-through (write immediately to memory) 

 Write-back (defer write to memory until replacement of line) 

 Need a dirty bit (line different from memory or not) 

 What to do on a write-miss? 
 Write-allocate (load into cache, update line in cache) 

 Good if more writes to the location follow 

 No-write-allocate (writes immediately to memory) 

 Typical 
 Write-through + No-write-allocate 

 Write-back + Write-allocate 
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Software Caches are More Flexible 

 Examples 

 File system buffer caches, web browser caches, etc. 

 

 Some design differences 

 Almost always fully-associative 

 so, no placement restrictions 

 index structures like hash tables are common (for placement) 

 Often use complex replacement policies 

 misses are very expensive when disk or network involved 

 worth thousands of cycles to avoid them 

 Not necessarily constrained to single “block” transfers 

 may fetch or write-back in larger units, opportunistically 
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The Memory Mountain 

53 
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Optimizations for the Memory Hierarchy 

 Write code that has locality 
 Spatial: access data contiguously 

 Temporal: make sure access to the same data is not too far apart in 
time 

 How to achieve? 
 Proper choice of algorithm 

 Loop transformations 

 

 Cache versus register-level optimization: 
 In both cases locality desirable 

 Register space much smaller  
+ requires scalar replacement to exploit temporal locality 

 Register level optimizations include exhibiting instruction level 
parallelism (conflicts with locality) 
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Example: Matrix Multiplication 

a b 

i 

j 

* 

c 

= 

c = (double *) calloc(sizeof(double), n*n); 

 

/* Multiply n x n matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < n; i++) 

 for (j = 0; j < n; j++) 

             for (k = 0; k < n; k++) 

          c[i*n + j] += a[i*n + k]*b[k*n + j]; 

} 
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Cache Miss Analysis 
 Assume:  

 Matrix elements are doubles 

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 

 First iteration: 
 n/8 + n = 9n/8 misses 

(omitting matrix c) 

 

 

 Afterwards in cache: 
(schematic) 

* = 

n 

* = 

8 wide 
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Cache Miss Analysis 
 Assume:  

 Matrix elements are doubles 

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 

 Other iterations: 
 Again: 

n/8 + n = 9n/8 misses 
(omitting matrix c) 

 

 

 Total misses: 
 9n/8 * n2 = (9/8) * n3  

n 

* = 

8 wide 
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Blocked Matrix Multiplication 
c = (double *) calloc(sizeof(double), n*n); 

 

/* Multiply n x n matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < n; i+=B) 

 for (j = 0; j < n; j+=B) 

             for (k = 0; k < n; k+=B) 

   /* B x B mini matrix multiplications */ 

                  for (i1 = i; i1 < i+B; i++) 

                      for (j1 = j; j1 < j+B; j++) 

                          for (k1 = k; k1 < k+B; k++) 

                       c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1]; 

} 

a b 

i1 

j1 

* 

c 

= 
c 

+ 

Block size B x B 
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Cache Miss Analysis 
 Assume:  

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 Four blocks       fit into cache: 4B2 < C 

 

 First (block) iteration: 
 B2/8 misses for each block 

 2n/B * B2/8 = nB/4 
(omitting matrix c) 

 

 

 Afterwards in cache 
(schematic) 

* = 

* = 

Block size B x B 

n/B blocks 
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Cache Miss Analysis 
 Assume:  

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 Three blocks       fit into cache: 3B2 < C 

 

 Other (block) iterations: 
 Same as first iteration 

 2n/B * B2/8 = nB/4 

 

 

 Total misses: 
 nB/4 * (n/B)2 = n3/(4B) 

* = 

Block size B x B 

n/B blocks 
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Summary 

 No blocking: (9/8) * n3 

 Blocking:  1/(4B) * n3 

 If B = 8    difference is 4 * 8 * 9 / 8   = 36x 

 If B = 16  difference is 4 * 16 * 9 / 8 = 72x 

 

 Suggests largest possible block size B, but limit 4B2 < C! 
(can possibly be relaxed a bit, but there is a limit for B) 

 Reason for dramatic difference: 
 Matrix multiplication has inherent temporal locality: 

 Input data: 3n2, computation 2n3 

 Every array elements used O(n) times! 

 But program has to be written properly 
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