
University of Washington

Today

 Virtual memory (VM)
 Overview and motivation

 VM as tool for caching

 VM as tool for memory management

 VM as tool for memory protection

 Address translation

1

University of Washington

Processes

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Private virtual address space

 Each program seems to have exclusive use of main memory

 How are these Illusions maintained?
 Process executions interleaved (multi-tasking)

 Address spaces managed by virtual memory system

2

University of Washington

Concurrent Processes

 Two processes run concurrently (are concurrent) if their
instruction executions (flows) overlap in time

 Otherwise, they are sequential

 Examples:
 Concurrent: A & B, A & C

 Sequential: B & C

Process A Process B Process C

time

3

University of Washington

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as
executing in parallel (only an illusion?)

time

Process A Process B Process C

4

University of Washington

Context Switching

 Processes are managed by a shared chunk of OS code
called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of a user process

 Control flow passes from one process to another via a
context switch… (how?)

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

5

University of Washington

 Programs refer to virtual memory addresses
 movl (%ecx),%eax

 Conceptually very large array of bytes

 Each byte has its own address

 Actually implemented with hierarchy of different
memory types

 System provides address space private to particular
“process”

 Allocation: Compiler and run-time system
 Where different program objects should be stored

 All allocation within single virtual address space

 But why virtual memory?

 Why not physical memory?

Virtual Memory (Previous Lectures)

00∙∙∙∙∙∙0

FF∙∙∙∙∙∙F

6

University of Washington

Problem 1: How Does Everything Fit?

64-bit addresses:
16 Exabyte

Physical main memory:
Few Gigabytes

?

And there are many processes ….
7

University of Washington

Problem 2: Memory Management

Physical main memory

What goes

where?

stack
heap
.text

.data

…

Process 1
Process 2
Process 3
…
Process n

x

8

University of Washington

Problem 3: How To Protect

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

9

University of Washington

Solution: Level Of Indirection

 Each process gets its own private memory space

 Solves the previous problems

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

mapping

10

University of Washington

Address Spaces

 Linear address space: Ordered set of contiguous non-negative integer
addresses:
 {0, 1, 2, 3 … }

 Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses (n >> m)
 {0, 1, 2, 3, …, M-1}

 Clean distinction between data (bytes) and their attributes (addresses)

 Each object can now have multiple addresses

 Every byte in main memory:
one physical address, one (or more) virtual addresses

11

University of Washington

A System Using Physical Addressing

 Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

12

University of Washington

A System Using Virtual Addressing

 Used in all modern desktops, laptops, workstations

 One of the great ideas in computer science

 MMU checks the cache

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

13

University of Washington

Why Virtual Memory (VM)?

 Efficient use of limited main memory (RAM)
 Use RAM as a cache for the parts of a virtual address space

 some non-cached parts stored on disk

 some (unallocated) non-cached parts stored nowhere

 Keep only active areas of virtual address space in memory

 transfer data back and forth as needed

 Simplifies memory management for programmers

 Each process gets the same full, private linear address space

 Isolates address spaces
 One process can’t interfere with another’s memory

 because they operate in different address spaces

 User process cannot access privileged information

 different sections of address spaces have different permissions
14

University of Washington

VM as a Tool for Caching

 Virtual memory: array of N = 2n contiguous bytes

 think of the array (allocated part) as being stored on disk

 Physical main memory (DRAM) = cache for allocated virtual memory

 Blocks are called pages; size = 2p

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

2n-1

2m-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Disk

15

University of Washington

Memory Hierarchy: Core 2 Duo

Disk

Main
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput:

Latency: 100 cycles 14 cycles 3 cycles millions

~4 MB

32 KB

~4 GB ~500 GB

Not drawn to scale

L1/L2 cache: 64 B blocks

Miss penalty (latency): 30x

Miss penalty (latency): 10,000x

16

University of Washington

DRAM Cache Organization

 DRAM cache organization driven by the enormous miss penalty
 DRAM is about 10x slower than SRAM

 Disk is about 10,000x slower than DRAM

 For first byte, faster for next byte

 Consequences
 Large page (block) size: typically 4-8 KB, sometimes 4 MB

 Fully associative

 Any VP can be placed in any PP

 Requires a “large” mapping function – different from CPU caches

 Highly sophisticated, expensive replacement algorithms

 Too complicated and open-ended to be implemented in hardware

 Write-back rather than write-through

17

University of Washington

Address Translation: Page Tables

 A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages. Here: 8 VPs
 Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

18

University of Washington

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

19

University of Washington

Page Hit

 Page hit: reference to VM word that is in physical memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

20

University of Washington

Page Miss

 Page miss: reference to VM word that is not in physical
memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

21

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

22

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

23

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

24

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

25

University of Washington

Why does it work? Locality

 Virtual memory works because of locality

 At any point in time, programs tend to access a set of active
virtual pages called the working set
 Programs with better temporal locality will have smaller working sets

 If (working set size < main memory size)
 Good performance for one process after compulsory misses

 If (SUM(working set sizes) > main memory size)
 Thrashing: Performance meltdown where pages are swapped (copied)

in and out continuously

26

University of Washington

VM as a Tool for Memory Management

 Key idea: each process has its own virtual address space
 It can view memory as a simple linear array

 Mapping function scatters addresses through physical memory

 Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

27

University of Washington

VM as a Tool for Memory Management
 Memory allocation

 Each virtual page can be mapped to any physical page

 A virtual page can be stored in different physical pages at different times

 Sharing code and data among processes
 Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

28

University of Washington

Simplifying Linking and Loading

 Linking
 Each program has similar virtual

address space

 Code, stack, and shared libraries
always start at the same address

 Loading
 execve() allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

 The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp
(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

29

University of Washington

VM as a Tool for Memory Protection
 Extend PTEs with permission bits

 Page fault handler checks these before remapping
 If violated, send process SIGSEGV signal (segmentation fault)

Process i: Address READ WRITE

PP 6 Yes No

PP 4 Yes Yes

PP 2 Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

Address READ WRITE

PP 9 Yes No

PP 6 Yes Yes

PP 11 Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

30

University of Washington

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
Memory PA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

31

University of Washington

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

32

University of Washington

Speeding up Translation with a TLB

 Page table entries (PTEs) are cached in L1 like any other
memory word

 PTEs may be evicted by other data references

 PTE hit still requires a 1-cycle delay

 Solution: Translation Lookaside Buffer (TLB)
 Small hardware cache in MMU

 Maps virtual page numbers to physical page numbers

 Contains complete page table entries for small number of pages

33

University of Washington

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

34

University of Washington

TLB Miss

MMU
Cache/
Memory PA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an add’l memory access (the PTE)
Fortunately, TLB misses are rare

35

University of Washington

Simple Memory System Example

 Addressing
 14-bit virtual addresses

 12-bit physical address

 Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPO PPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

36

University of Washington

Simple Memory System Page Table

Only show first 16 entries (out of 256)

1 0D 0F

1 11 0E

1 2D 0D

0 – 0C

0 – 0B

1 09 0A

1 17 09

1 13 08

Valid PPN VPN

0 – 07

0 – 06

1 16 05

0 – 04

1 02 03

1 33 02

0 – 01

1 28 00

Valid PPN VPN

37

University of Washington

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

38

University of Washington

Simple Memory System Cache
 16 lines, 4-byte block size

 Physically addressed

 Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

03 DF C2 11 1 16 7

– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4

– – – – 0 36 3

08 04 02 00 1 1B 2

– – – – 0 15 1

11 23 11 99 1 19 0

B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F

D3 1B 77 83 1 13 E

15 34 96 04 1 16 D

– – – – 0 12 C

– – – – 0 0B B

3B DA 15 93 1 2D A

– – – – 0 2D 9

89 51 00 3A 1 24 8

B3 B2 B1 B0 Valid Tag Idx

39

University of Washington

Current state of caches/tables

03 DF C2 11 1 16 7

– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4

– – – – 0 36 3

08 04 02 00 1 1B 2

– – – – 0 15 1

11 23 11 99 1 19 0

B3 B2 B1 B0 Valid Tag Idx

– – – – 0 14 F

D3 1B 77 83 1 13 E

15 34 96 04 1 16 D

– – – – 0 12 C

– – – – 0 0B B

3B DA 15 93 1 2D A

– – – – 0 2D 9

89 51 00 3A 1 24 8

B3 B2 B1 B0 Valid Tag Idx

Cache

1 0D 0F

1 11 0E

1 2D 0D

0 – 0C

0 – 0B

1 09 0A

1 17 09

1 13 08

Valid PPN VPN

0 – 07

0 – 06

1 16 05

0 – 04

1 02 03

1 33 02

0 – 01

1 28 00

Valid PPN VPN

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

TLB

Page table

40

University of Washington

Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 1 0 1 0 1 1 1 1 0 0 0 0

0x0F 3 0x03 Y N 0x0D

0 0 0 1 0 1 0 1 1 0 1 0

0 0x5 0x0D Y 0x36

41

University of Washington

Address Translation Example #2

Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

1 1 1 1 0 0 0 1 1 1 0 1 0 0

0x2E 2 0x0B N Y TBD

42

University of Washington

Address Translation Example #3

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0x00 0 0x00 N N 0x28

0 0 0 0 0 0 0 0 0 1 1 1

0 0x8 0x28 N Mem

43

University of Washington

Disk

Servicing a Page Fault

(1) Processor signals disk controller
 Read block of length P starting at

disk address X and store starting at
memory address Y

(2) Read occurs
 Direct Memory Access (DMA)

 Under control of I/O controller

(3) Controller signals completion
 Interrupts processor

 OS resumes suspended process

Disk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

44

University of Washington

Summary

 Programmer’s view of virtual memory
 Each process has its own private linear address space

 Cannot be corrupted by other processes

 System view of virtual memory
 Uses memory efficiently by caching virtual memory pages

 Efficient only because of locality

 Simplifies memory management and programming

 Simplifies protection by providing a convenient interpositioning point
to check permissions

45

University of Washington

Memory System Summary
 L1/L2 Memory Cache

 Purely a speed-up technique

 Behavior invisible to application programmer and (mostly) OS

 Implemented totally in hardware

 Virtual Memory
 Supports many OS-related functions

 Process creation, task switching, protection

 Software

 Allocates/shares physical memory among processes

 Maintains high-level tables tracking memory type, source, sharing

 Handles exceptions, fills in hardware-defined mapping tables

 Hardware

 Translates virtual addresses via mapping tables, enforcing permissions

 Accelerates mapping via translation cache (TLB)

46

