
University of Washington 

Today 

 Virtual memory (VM) 
 Overview and motivation 

 VM as tool for caching 

 VM as tool for memory management 

 VM as tool for memory protection 

 Address translation 

1 



University of Washington 

Processes 

 Definition: A process is an instance of a running program 
 One of the most important ideas in computer science 

 Not the same as “program” or “processor” 

 

 Process provides each program with two key abstractions: 
 Logical control flow 

 Each program seems to have exclusive use of the CPU 

 Private virtual address space 

 Each program seems to have exclusive use of main memory 

 

 How are these Illusions maintained? 
 Process executions interleaved (multi-tasking) 

 Address spaces managed by virtual memory system 
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Concurrent Processes 

 Two processes run concurrently (are concurrent) if their 
instruction executions (flows) overlap in time 

 Otherwise, they are sequential 

 Examples: 
 Concurrent: A & B, A & C 

 Sequential: B & C 

Process A Process B Process C 

time 
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User View of Concurrent Processes 

 Control flows for concurrent processes are physically 
disjoint in time 

 

 However, we can think of concurrent processes as 
executing in parallel (only an illusion?) 

time 

Process A Process B Process C 
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Context Switching 

 Processes are managed by a shared chunk of OS code  
called the kernel 
 Important: the kernel is not a separate process, but rather runs as part 

of a user process 

 Control flow passes from one process to another via a 
context switch… (how?) 

 
Process A Process B 

user code 

kernel code 

user code 

kernel code 

user code 

context switch 

context switch 

time 
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 Programs refer to virtual memory addresses 
 movl (%ecx),%eax 

 Conceptually very large array of bytes 

 Each byte has its own address 

 Actually implemented with hierarchy of different 
memory types 

 System provides address space private to particular 
“process” 

 Allocation: Compiler and run-time system 
 Where different program objects should be stored 

 All allocation within single virtual address space 

 But why virtual memory?  

 Why not physical memory? 

Virtual Memory (Previous Lectures) 

00∙∙∙∙∙∙0 

FF∙∙∙∙∙∙F 

6 



University of Washington 

Problem 1: How Does Everything Fit? 

64-bit addresses: 
16 Exabyte 

Physical main memory: 
Few Gigabytes 

? 

And there are many processes …. 
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Problem 2: Memory Management 

Physical main memory 

What goes 

where? 

stack 
heap 
.text 

.data 

… 

Process 1 
Process 2 
Process 3 
… 
Process n 

x 
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Problem 3: How To Protect 

Physical main memory 

Process i 

Process j 

Problem 4: How To Share? 
Physical main memory 

Process i 

Process j 
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Solution: Level Of Indirection 

 Each process gets its own private memory space 

 Solves the previous problems 

Physical memory 

Virtual memory 

Virtual memory 

Process 1 

Process n 

mapping 
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Address Spaces 

 Linear address space: Ordered set of contiguous non-negative integer 
addresses: 
  {0, 1, 2, 3 … } 

 

 Virtual address space: Set of N = 2n virtual addresses 
  {0, 1, 2, 3, …, N-1} 

 

 Physical address space: Set of M = 2m physical addresses ( n >> m ) 
  {0, 1, 2, 3, …, M-1} 

 

 Clean distinction between data (bytes) and their attributes (addresses) 

 Each object can now have multiple addresses 

 Every byte in main memory:  
one physical address, one (or more) virtual addresses 
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A System Using Physical Addressing 

 Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames 

0: 
1: 

M-1: 

Main memory 

CPU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
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A System Using Virtual Addressing 

 Used in all modern desktops, laptops, workstations 

 One of the great ideas in computer science 

 MMU checks the cache 

0: 
1: 

M-1: 

Main memory 

MMU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

CPU 

Virtual address 
(VA) 

CPU Chip 
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Why Virtual Memory (VM)? 

 Efficient use of limited main memory (RAM) 
 Use RAM as a cache for the parts of a virtual address space 

 some non-cached parts stored on disk 

 some (unallocated) non-cached parts stored nowhere 

 Keep only active areas of virtual address space in memory 

 transfer data back and forth as needed 

 
 Simplifies memory management for programmers 

 Each process gets the same full, private linear address space 

 

 Isolates address spaces 
 One process can’t interfere with another’s memory  

 because they operate in different address spaces 

 User process cannot access privileged information 

 different sections of address spaces have different permissions 
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VM as a Tool for Caching 

 Virtual memory: array of N = 2n contiguous bytes 

 think of the array (allocated part) as being stored on disk 

 Physical main memory (DRAM) = cache for allocated virtual memory 

 Blocks are called pages; size = 2p 

PP 2m-p-1 

Physical memory 

Empty 

Empty 

Uncached 

VP 0 

VP 1 

VP 2n-p-1 

Virtual memory 

Unallocated 

Cached 

Uncached 

Unallocated 

Cached 

Uncached 

PP 0 

PP 1 

Empty 

Cached 

0 

2n-1 

2m-1 

0 

Virtual pages (VP's)  
stored on disk 

Physical pages (PP's)  
cached in DRAM 

Disk 
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Memory Hierarchy: Core 2 Duo 

Disk 

Main 
Memory 

L2 
unified 
cache 

L1  
I-cache 

L1  
D-cache 

CPU Reg 

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput: 

Latency: 100 cycles 14 cycles 3 cycles millions 

~4 MB 

32 KB 

~4 GB ~500 GB 

Not drawn to scale  

L1/L2 cache: 64 B blocks 

Miss penalty (latency): 30x 

Miss penalty (latency): 10,000x 
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DRAM Cache Organization 

 DRAM cache organization driven by the enormous miss penalty 
 DRAM is about 10x slower than SRAM 

 Disk is about 10,000x slower than DRAM 

 For first byte, faster for next byte 

 

 Consequences 
 Large page (block) size: typically 4-8 KB, sometimes 4 MB 

 Fully associative  

 Any VP can be placed in any PP 

 Requires a “large” mapping function – different from CPU caches 

 Highly sophisticated, expensive replacement algorithms 

 Too complicated and open-ended to be implemented in hardware 

 Write-back rather than write-through 
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Address Translation: Page Tables 

 A page table is an array of page table entries (PTEs) that 
maps virtual pages to physical pages. Here: 8 VPs 
 Per-process kernel data structure in DRAM 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 
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Address Translation With a Page Table 

Virtual page number (VPN) Virtual page offset (VPO) 

Physical page number (PPN) Physical page offset (PPO) 

Virtual address 

Physical address 

Valid Physical page number (PPN) 

Page table  
base register 

(PTBR) 

Page table  Page table address  
for process 

Valid bit = 0: 
page not in memory 

(page fault) 
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Page Hit 

 Page hit: reference to VM word that is in physical memory 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Page Miss 

 Page miss: reference to VM word that is not in physical 
memory 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 3 

Virtual memory 
(disk) 

Valid 
0 

1 

1 
0 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

 Offending instruction is restarted: page hit! 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 3 

Virtual memory 
(disk) 

Valid 
0 

1 

1 
0 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Why does it work?  Locality 

 Virtual memory works because of locality 
 

 At any point in time, programs tend to access a set of active 
virtual pages called the working set 
 Programs with better temporal locality will have smaller working sets 

 

 If (working set size < main memory size)  
 Good performance for one process after compulsory misses 

 

 If ( SUM(working set sizes) > main memory size )  
 Thrashing: Performance meltdown where pages are swapped (copied) 

in and out continuously 

26 



University of Washington 

VM as a Tool for Memory Management 

 Key idea: each process has its own virtual address space 
 It can view memory as a simple linear array 

 Mapping function scatters addresses through physical memory 

 Well chosen mappings simplify memory allocation and management 

Virtual 
Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only  
library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 

VP 2 
... 

0 

N-1 

VP 1 

VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 
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VM as a Tool for Memory Management 
 Memory allocation 

 Each virtual page can be mapped to any physical page 

 A virtual page can be stored in different physical pages at different times 

 Sharing code and data among processes 
 Map virtual pages to the same physical page (here: PP 6) 

Virtual 
Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only  
library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 

VP 2 
... 

0 

N-1 

VP 1 

VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 
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Simplifying Linking and Loading 

 Linking  
 Each program has similar virtual 

address space 

 Code, stack, and shared libraries 
always start at the same address 

 

 Loading  
 execve() allocates virtual pages 

for .text and .data sections  
= creates PTEs marked as invalid 

 The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system 

 

Kernel virtual memory 

Memory-mapped region for 
shared libraries 

Run-time heap 
(created by malloc) 

User stack 
(created at runtime) 

Unused 
0 

%esp  
(stack  
pointer) 

Memory 
invisible to 
user code 

brk 

0xc0000000 

0x08048000 

0x40000000 

Read/write segment 
(.data, .bss) 

Read-only segment 
(.init, .text, .rodata) 

Loaded  
from  
the  
executable  
file 

29 



University of Washington 

VM as a Tool for Memory Protection 
 Extend PTEs with permission bits 

 Page fault handler checks these before remapping 
 If violated, send process SIGSEGV signal (segmentation fault) 

Process i: Address READ WRITE 

PP 6 Yes No 

PP 4 Yes Yes 

PP 2 Yes 

VP 0: 

VP 1: 

VP 2: 

• 
• 
• 

Process j: 

Yes 

SUP 

No 

No 

Yes 

Address READ WRITE 

PP 9 Yes No 

PP 6 Yes Yes 

PP 11 Yes Yes 

SUP 

No 

Yes 

No 

VP 0: 

VP 1: 

VP 2: 

Physical  
Address Space 

PP 2 

PP 4 

PP 6 

PP 8 

PP 9 

PP 11 
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Address Translation: Page Hit 

1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) MMU sends physical address to cache/memory 

5) Cache/memory sends data word to processor 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
VA 

CPU Chip 
PTEA 

PTE 
1 

2 

3 

4 

5 
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Address Translation: Page Fault 

1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) Valid bit is zero, so MMU triggers page fault exception 

5) Handler identifies victim (and, if dirty, pages it out to disk) 

6) Handler pages in new page and updates PTE in memory 

7) Handler returns to original process, restarting faulting instruction 

MMU Cache/ 
Memory 

CPU 
VA 

CPU Chip 
PTEA 

PTE 

1 

2 

3 

4 

5 

Disk 

Page fault handler 

Victim page 

New page 

Exception 

6 

7 
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Speeding up Translation with a TLB 

 Page table entries (PTEs) are cached in L1 like any other 
memory word 

 PTEs may be evicted by other data references 

 PTE hit still requires a 1-cycle delay 

 Solution: Translation Lookaside Buffer (TLB) 
 Small hardware cache in MMU 

 Maps virtual page numbers to  physical page numbers 

 Contains complete page table entries for small number of pages 
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TLB Hit 

MMU 
Cache/ 
Memory 

PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

4 

5 

A TLB hit eliminates a memory access 

TLB 

VPN 3 
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TLB Miss 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

5 

6 

TLB 

VPN 

4 

PTEA 

3 

A TLB miss incurs an add’l memory access (the PTE) 
Fortunately, TLB misses are rare 
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Simple Memory System Example 

 Addressing 
 14-bit virtual addresses 

 12-bit physical address 

 Page size = 64 bytes 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 10 9 8 7 6 5 4 3 2 1 0 

VPO 

PPO PPN 

VPN 

Virtual Page Number Virtual Page Offset 

Physical Page Number Physical Page Offset 
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Simple Memory System Page Table 

Only show first 16 entries (out of 256) 

1 0D 0F 

1 11 0E 

1 2D 0D 

0 – 0C 

0 – 0B 

1 09 0A 

1 17 09 

1 13 08 

Valid PPN VPN 

0 – 07 

0 – 06 

1 16 05 

0 – 04 

1 02 03 

1 33 02 

0 – 01 

1 28 00 

Valid PPN VPN 
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Simple Memory System TLB 

 16 entries 

 4-way associative 
 

 

 

 
13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

0 – 02 1 34 0A 1 0D 03 0 – 07 3 

0 – 03 0 – 06 0 – 08 0 – 02 2 

0 – 0A 0 – 04 0 – 02 1 2D 03 1 

1 02 07 0 – 00 1 0D 09 0 – 03 0 

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set 
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Simple Memory System Cache 
 16 lines, 4-byte block size 

 Physically addressed 

 Direct mapped 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

03 DF C2 11 1 16 7 

– – – – 0 31 6 

1D F0 72 36 1 0D 5 

09 8F 6D 43 1 32 4 

– – – – 0 36 3 

08 04 02 00 1 1B 2 

– – – – 0 15 1 

11 23 11 99 1 19 0 

B3 B2 B1 B0 Valid Tag Idx 

– – – – 0 14 F 

D3 1B 77 83 1 13 E 

15 34 96 04 1 16 D 

– – – – 0 12 C 

– – – – 0 0B B 

3B DA 15 93 1 2D A 

– – – – 0 2D 9 

89 51 00 3A 1 24 8 

B3 B2 B1 B0 Valid Tag Idx 
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Current state of caches/tables 

03 DF C2 11 1 16 7 

– – – – 0 31 6 

1D F0 72 36 1 0D 5 

09 8F 6D 43 1 32 4 

– – – – 0 36 3 

08 04 02 00 1 1B 2 

– – – – 0 15 1 

11 23 11 99 1 19 0 

B3 B2 B1 B0 Valid Tag Idx 

– – – – 0 14 F 

D3 1B 77 83 1 13 E 

15 34 96 04 1 16 D 

– – – – 0 12 C 

– – – – 0 0B B 

3B DA 15 93 1 2D A 

– – – – 0 2D 9 

89 51 00 3A 1 24 8 

B3 B2 B1 B0 Valid Tag Idx 

Cache 

1 0D 0F 

1 11 0E 

1 2D 0D 

0 – 0C 

0 – 0B 

1 09 0A 

1 17 09 

1 13 08 

Valid PPN VPN 

0 – 07 

0 – 06 

1 16 05 

0 – 04 

1 02 03 

1 33 02 

0 – 01 

1 28 00 

Valid PPN VPN 

0 – 02 1 34 0A 1 0D 03 0 – 07 3 

0 – 03 0 – 06 0 – 08 0 – 02 2 

0 – 0A 0 – 04 0 – 02 1 2D 03 1 

1 02 07 0 – 00 1 0D 09 0 – 03 0 

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set 

TLB 

Page table 
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Address Translation Example #1 

Virtual Address: 0x03D4 
 

 

 

 
 

 
VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 1 0 1 0 1 1 1 1 0 0 0 0 

0x0F 3 0x03 Y N 0x0D 

0 0 0 1 0 1 0 1 1 0 1 0 

0 0x5 0x0D Y 0x36 
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Address Translation Example #2 

Virtual Address: 0x0B8F 
 

 

 

 
 

 
VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

1 1 1 1 0 0 0 1 1 1 0 1 0 0 

0x2E 2 0x0B N Y TBD 
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Address Translation Example #3 

Virtual Address: 0x0020 
 

 

 

 
 

 
VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO___ CI___ CT ____      Hit? __              Byte: ____ 
 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0x00 0 0x00 N N 0x28 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0x8 0x28 N Mem 
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Disk 

Servicing a Page Fault 

(1) Processor signals disk controller 
 Read block of length P starting at 

disk address X and store starting at 
memory address Y 

(2) Read occurs 
 Direct Memory Access (DMA) 

 Under control of I/O controller 

(3) Controller signals completion 
 Interrupts processor 

 OS resumes suspended process  

Disk 

Memory-I/O bus 

Processor 

Cache 

Memory 

I/O 
controller 

Reg 

(2) DMA 
Transfer 

(1) Initiate Block Read 

(3) Read 
Done 
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Summary 

 Programmer’s view of virtual memory 
 Each process has its own private linear address space 

 Cannot be corrupted by other processes 

 

 System view of virtual memory 
 Uses memory efficiently by caching virtual memory pages 

 Efficient only because of locality 

 Simplifies memory management and programming 

 Simplifies protection by providing a convenient interpositioning point 
to check permissions 

45 



University of Washington 

Memory System Summary 
 L1/L2 Memory Cache 

 Purely a speed-up technique 

 Behavior invisible to application programmer and (mostly) OS 

 Implemented totally in hardware 

 Virtual Memory 
 Supports many OS-related functions 

 Process creation, task switching, protection 

 Software 

 Allocates/shares physical memory among processes 

 Maintains high-level tables tracking memory type, source, sharing 

 Handles exceptions, fills in hardware-defined mapping tables 

 Hardware 

 Translates virtual addresses via mapping tables, enforcing permissions 

 Accelerates mapping via translation cache (TLB) 

46 


