
University of Washington

Today

 Reconnecting to Java
 Back to CSE143!

 But now you know a lot more about what really happens
when we execute programs

 Java running native (compiled to C/assembly)
 Object representations: arrays, strings, etc.

 Bounds checking

 Memory allocation, constructors

 Garbage collection

 Java on a virtual machine
 Virtual processor

 Another language: byte-codes

1

University of Washington

Meta-point to this lecture

 None of this data representation we are going to
talk about is guaranteed by Java

 In fact, the language simply provides an abstraction

 We can't easily tell how things are really represented

 But once you understand lower levels of abstraction
it is worth seeing the most straightforward way to
implement Java’s basic features since it may be
useful in thinking about your program

 We’ll be focusing on this “straightforward” implementation

2

University of Washington

Data in Java

 Integers, floats, doubles, pointers – same as C
 Yes, Java has pointers – they are called ‘references’ – however, Java

references are much more constrained than C’s general pointers

 Null is typically represented as 0

 Characters and strings

 Arrays

 Objects

3

University of Washington

Data in Java

 Characters and strings
 Two-byte Unicode instead of ASCII

 Represents most of the world’s alphabets

 String not bounded by a ‘/0’ (null character)

 Bounded by hidden length field at beginning of string

4

the string ‘CSE351’:

43 \0

0 1 4 16

53 45 33 35 31

6 00 43 00 53 00 45 00 33 00 35 00 31

7

C: ASCII

Java: Unicode

University of Washington

Data in Java

 Arrays
 Bounds specified in hidden fields at start of array (int – 4 bytes)

 array.length returns value of this field

 Every access triggers a bounds-check

 Code is added to ensure the index is within bounds

 Trap if out-of-bounds

 Every element initialized to 0

5

int array[5]:

0 4 20

5 00 00 00 00 00

C

Java

24

?? ?? ?? ?? ??

University of Washington

Structure of an (object) array

 In C, an array is a contiguous series of structs
 Accessed by index, pointer value incremented by size of object in array

 In Java, an array is a contiguous series of primitive objects
 Can be ints, doubles, references (pointers),

 Accessed by index, pointer value incremented by size of element

 Before access check “0 <= index < length” – throw bounds exception if not

 Array of structs vs. array of references to objects

6

struct pt { float x; float y; };

struct pt *array = (struct pt *) malloc (100 * sizeof(struct pt));

 …array[index]…

class Pt { float x; float y; };

Pt[] array = new Pt[100];

for (i=0; i<100; i=i+1) { array[i] = new Pt(); }

 …array[index]…

University of Washington

Data structures (objects) in Java

 Objects (structs) can only include primitive data types
 Refer to complex data types (arrays, other objects, etc.)

using references

7

C Java struct rec {

 int i;

 int a[3];

 struct rec *p;

};

struct rec r;

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

class Rec {

 int i;

 int[] a = new int[3];

 Rec p;

…

};
r = new Rec;

r2 = new Rec;

r.i = val;

r.a[2] = val;

r.Rec = r2;

i a p

0 4 16 20

i a p

0 4 8 12
int[3]

4 16

3

0

University of Washington

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to an object
 And only to its first element – not to the middle of it

8

C struct rec {

 int i;

 int a[3];

 struct rec *p;

};

… (&(r.a[1])) // ptr

i a p

0 4 8 12
int[3]

4 16

3

0

Java class Rec {

 int i;

 int[] a = new int[3];

 Rec p;

…

};

… (r.a, 1) // ref & index

i a p

0 4 16 20

University of Washington

Pointers to fields

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like C’s r->a

9

University of Washington

s n

0

p

4 8 12

Casting in C

 We can cast any pointer into any other pointer

10

struct BlockInfo {

 int sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

…

int x;

BlockInfo *p;

BlockInfo *newBlock;

…

newBlock = (BlockInfo *) ((char *) p + x);

…

Cast p into char
pointer so that
you can add byte
offset without
scaling

Cast back into
BlockInfo pointer
so you can use it
as BlockInfo struct

x

s p n

University of Washington

Casting in Java

 Can only cast compatible object references

11

class Parent {

 int address;

};

class Sister extends Parent{

 int hers;

};

class Brother extends Parent{

 int his;

};

// Parent is a super class of Brother and Sister, which are siblings

Parent a = new Parent();

Sister xx = new Sister();

Brother xy = new Brother();

Parent p1 = new Sister(); // ok, everything needed for Parent

 // is also in Sister

Parent p2 = p1; // ok, p1 is already a Parent

Sister xx2 = new Brother(); // incompatible type – Brother and

 // Sisters are siblings

Sister xx3 = new Parent(); // wrong direction; elements in Sister

 // not in Parent (hers)

Brother xy2 = (Brother) a; // run-time error; Parent does not contain

 // all elements in Brother (his)

Sister xx4 = (Sister) p2; // ok, p2 started out as Sister

Sister xx5 = (Sister) xy; // inconvertible types, xy is Brother

class Object{

 …

};

University of Washington

Creating objects in Java

12

class Point {

 double x;

 double y;

Point() {

 x = 0;

 y = 0;

 }

boolean samePlace(Point p) {

 return (x == p.x) && (y == p.y);

 }

}

…

Point newPoint = new Point();

…

constructor

fields

method

creation

University of Washington

Creating objects in Java

 “new”
 Allocates space for data fields

 Adds pointer in object to “virtual table” or “vtable” for class (shared)

 Includes space for “static fields” and pointers to methods’ code

 Returns reference (pointer) to new object in memory

 Runs “constructor” method

 Eventually garbage collected if all references
to the object are discarded

13

x vtable

constructor samePlace

y

University of Washington

Initialization

 newPoint’s fields are initialized starting with the vtable
pointer to the vtable for this class

 The next step is to call the ‘constructor’ for this object type

 Constructor code is found using the ‘vtable pointer’ and
passed a pointer to the newly allocated memory area for
newPoint so that the constructor can set its x and y to 0
 This can be resolved statically, so does’t require vtable lookup

 Point.constructor()

14

x = 0 vtable

constructor samePlace

y = 0

University of Washington

What about the vtable itself?

 Array of pointers to every method defined for the object
Point

 Compiler decided in which element of the array to put each
pointer and keeps track of which it puts where

 Methods are just C functions but with an extra argument –
the pointer to the allocated memory for the object whose
method is being called
 E.g., newPoint.samePlace calls the samePlace method with a pointer to

newPoint (called ‘this’) and a pointer to the argument, p – in this case,
both of these are pointers to objects of type Point

 Method becomes Point.samePlace(Point this, Point p)

15

constructor samePlace

University of Washington

Calling a method

 newPoint.samePlace(p2) is a call to the samePlace method of
the object of type Point with the arguments newPoint and p2
which are both pointers to Point objects

 In C
 CodePtr = (newPoint->vtable)[theRightIndexForSamePlace]

 Gets address of method’s code

 CodePtr(this, p2)

 Calls method with references to object and parameter

 We need ‘this’ so that we can read the x and y of our object
and execute
 return x==p.x && y==p.y; which becomes

 return (this->x==p2->x) && (this->y==p2->y)

16

University of Washington

Subclassing

 Where does “aNewField” go?
 At end of fields of Point

 Where does pointer to code for two new methods go?
 To override “samePlace”, write over old pointer

 Add new pointer at end of table for new method “sayHi”

 This necessitates “dynamic” vtable

17

class PtSubClass extends Point{

 int aNewField;

 boolean samePlace(Point p2) {

 return false;

 }

 void sayHi() {

 System.out.println("hello");

 }

 }

University of Washington

Subclassing

18

class PtSubClass extends Point{

 int aNewField;

 boolean samePlace(Point p2) {

 return false;

 }

 void sayHi() {

 System.out.println("hello");

 }

 }

x vtable

constructor samePlace

y aNewField

sayHi

vtable for PtSubClass
(not Point)

Pointer to new code for samePlace
Pointer to old code for constructor

newField tacked on at end

University of Washington

Some Java Optimizations

 Don’t have to do every check
 analyze the code or change representation

 Don’t check for null
 install handler for segmentation faults and then check if pointer was

null in that code

 Use vtable pointers to check runtime casts
 If objects point to same vtable, then they are the same type

 Address of vtable serves as “run-time name for the class”

19

University of Washington

Implementing Programming Languages

 Many choices in how to implement programming models

 We’ve talked about compilation, can also interpret
 Execute line by line in original source code

 Less work for compiler – all work done at run-time

 Easier to debug – less translation

 Easier to protect other processes – runs in an simulated environment
that exists only inside the interpreter process

 Interpreting languages has a long history
 Lisp – one of the first programming languages, was interpreted

 Interpreted implementations are very much with us today
 Python, Javascript, Ruby, Matlab, PHP, Perl, …

20

University of Washington

Interpreted vs. Compiled

 Really a continuum, a choice to be made
 More or less work done by interpreter/compiler

 Java programs are usually run by a virtual machine
 VMs interpret an intermediate language – partly compiled

 Java can also be compiled (just as a C program is) or at
run-time by a just-in-time (JIT) compiler (as opposed to an
ahead-of-time (AOT) compiler)

21

Interpreted

Compiled

Lisp

C

Java

University of Washington

Virtual Machine Model

22

High-Level Language Program

Virtual Machine Language

Native Machine Language

Interpreter

Virtual Machine

Compiler

University of Washington

Java Virtual Machine

 Making Java machine-independent

 Providing stronger protections

 VM usually implemented in C

 Stack execution model

 There are many JVMs
 Some interpret

 Some compile into assembly

23

variable table

operand stack

constant
pool

0 1 2 3 4 n

Holds pointer ‘this’

Other parameters to method

Other variables

University of Washington

A Basic JVM Stack Example

24

mov 0x8001, %eax

mov 0x8002, %edx

add %edx, %eax

mov %eax, 0x8003

iload 1 // push 1st argument from table onto stack

iload 2 // push 2nd argument from table onto stack

iadd // add and pop top 2 element, push result

istore 3 // pop result and put it into third slot in table

No knowledge
of registers or
memory locations
(each instruction
is 1 byte – byte-code)

‘i’ stands for integer,
‘a’ for reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, …

University of Washington

A Simple Java Method

25

Method java.lang.String employeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes

 // pop an element from top of stack, retrieve the

 // specified field and push the value onto stack

 // "name" field is the fifth field of the class

4 areturn // Returns object at top of stack

0 1 4

aload_0 areturn getfield 00 05

00 05 B0 B4 2A In the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

University of Washington

Class File Format

 10 sections to the Java class file structure
 Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)

 Version of class file format: the minor and major versions of the class file

 Constant pool: Pool of constants for the class

 Access flags: for example whether the class is abstract, static, etc

 This class: The name of the current class

 Super class: The name of the super class

 Interfaces: Any interfaces in the class

 Fields: Any fields in the class

 Methods: Any methods in the class

 Attributes: Any attributes of the class (for example the name of the sourcefile, etc)

26

University of Washington

Example

27

Compiled from Employee.java

class Employee extends java.lang.Object {

public Employee(java.lang.String,int);

public java.lang.String employeeName();

public int employeeNumber();

}

Method Employee(java.lang.String,int)

0 aload_0

1 invokespecial #3 <Method java.lang.Object()>

4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

14 aload_0

15 aload_1

16 iload_2

17 invokespecial #6 <Method void

 storeData(java.lang.String, int)>

20 return

Method java.lang.String employeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>

4 areturn

Method int employeeNumber()

0 aload_0

1 getfield #4 <Field int idNumber>

4 ireturn

Method void storeData(java.lang.String, int)

…

javac Employee.java

javap -c Employee > Employee.bc

University of Washington

Other languages for JVMs

 Apart from the Java language itself, The most common or
well-known JVM languages are:
 AspectJ, an aspect-oriented extension of Java

 ColdFusion, a scripting language compiled to Java

 Clojure, a functional Lisp dialect

 Groovy, a scripting language

 JavaFX Script, a scripting language targeting the Rich Internet
Application domain

 JRuby, an implementation of Ruby

 Jython, an implementation of Python

 Rhino, an implementation of JavaScript

 Scala, an object-oriented and functional programming language

 And many others, even including C

28

University of Washington

Microsoft’s C# and .NET Framework

 C# has similar motivations as Java

 Virtual machine is called the Common Language Runtime (CLR)

 Common Intermediate Language (CLI) is C#’s byte-code

29

