

Today Topics: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011 101

Fractional Binary Numbers

- Representation

 - Bits to right of "binary point" represent fractional powers of 2 Represents rational number: $\int_{\sum_{k=-j}^{l} b_k \cdot 2^k}^{l} b_k \cdot 2^k$

Fractional Binary Numbers: Examples

■ Value 5 and 3/4 2 and 7/8 63/64

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0 . 111111.... are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0ϵ

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations Representation

Value

-) 1/3 0.0101010101[01]...2 0.001100110011[0011]...2 1/5 1/10 0.0001100110011[0011]...2

Fixed Point Representation • float → 32 bits; double → 64 bits • We might try representing fractional binary numbers by picking a fixed place for an implied binary point • "fixed point binary numbers" • Let's do that, using 8 bit floating point numbers as an example • #1: the binary point is between bits 2 and 3 • b, b₆ b₅ b₄ b₃ [.] b₂ b₁ b₀ • #2: the binary point is between bits 4 and 5 • b, b₈ b₅ [.] b₄ b₃ b₂ b₁ b₀

- The position of the binary point affects the <u>range</u> and <u>precision</u>
 - range: difference between the largest and smallest representable
 - precision: smallest possible difference between any two numbers

Fixed Point Pros and Cons

- Pros
 - It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - ints are just fixed point numbers with the binary point to the right of b
- Cons
 - There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision. The more you have of one, the less of the other

- Fixing fixed point: analogous to scientific notation
 - Not 12000000 but 1.2 x 10^7; not 0.0000012 but 1.2 x 10^-6
- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx• 0.011×2^5 and 1.1×2^3 represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1, don't bother to store it
- How do we do 0? How about 1.0/0.0?

Normalization and Special Values

- "Normalized" means mantissa has form 1.xxxxx
- 0.011×2^5 and 1.1×2^3 represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1, don't bother to store it
- Special values:
- The float value 00...0 represents zero
- If the exp == 11...1 and the mantissa == 00...0, it represents
- E.g., 10.0 / 0.0 → ∞

•If the exp == 11...1 and the mantissa != 00...0, it represents NaN

- "Not a Number"
- · Results from operations with undefined result
 - E.g., 0 * ∞

How do we do operations?

- Is representation exact? ****
- How are the operations carried out?

Floating Point Operations: Basic Idea

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Floating Point Multiplication

(-1)⁵¹ M1 2^{E1} * (-1)⁵² M2 2^{E2}

- Exact Result: (-1)^s M 2^E
 - s1 ^ s2 🖍 Sign s:
 - Significand *M*: M1 * M2
 - Exponent E: E1 + E2
- Fixing
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
 - What is hardest?

Floating Point Addition

 $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}

Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

- E1-E2 -

- Fixing
 - If M ≥ 2, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Hmm... if we round at every operation...

Floating Point in C ■ C Guarantees Two Levels 🚙 float single precision → double double precision ■ Conversions/Casting Casting between int, float, and double changes bit representation lacktriangledown Double/float ightarrow int Truncates fractional part Like rounding toward zero • Not defined when out of range or NaN: Generally sets to TMin $\mathtt{int} \to \mathtt{double}$ Exact conversion, why? $\mathtt{int} o \mathtt{float}$ • Will round according to rounding mode

Floating Point and the Programmer

```
Floating Point and the Programmer

#include <stdio.h>

int main(int arge, char* argv[]) {

    float f1 = 1.0;
    float f2 = 0.0;
    int i2;
    for ( !=0; i<10; i++) {
        printf("bx00Bx 0x800bx\n", *(int*)6f1, *(int*)6f2);
        printf("f1 = %10.8f\n\n", f1);
        printf("f2 = %10.8f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes": "no");
    return 0;
}
```

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them

 Can get overflow/underflow, just like ints
- Some "simple fractions" have no exact representation
- E.g., 0.1
- Can also lose precision, unlike ints
- "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute differing results
- NEVER test floating point values for equality!