University of Washington

Today: Floats! Wil &

Fractional Binary Numbers: Examples

B
m Value Representation 2 !
S 101.11 !
5and 3/4 . —_t -
Send3/a 0] Ly &
2and 7/8 1041121‘
63/64 0.111111, 1 ,,_|_+ |
2 ™ ‘T?-

m Observations
® Divide by 2 by shifting right
= Multiply by 2 by shifting left
® Numbers of form0.111111.., are just below 1.0
R 1/2+1/4+1/8+ .. +1/2'+ . 510
= Use notation 1.0 -¢

Today Topics: Floating Point

Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating point in C

Summary

= Representation

" Bits to right of “binary paint” represel onal powers of 2
" Represents rational number: ! r
b2

ey

Representable Numbers

m Limitation
= Can only exactly represent numbers of the form x/2*
® Other rational numbers have repeating bit representations

m Value Representation

- 1/3 0.0101010101[01] .,
1/5 0.001100110011[0011]..,
1/10 0.0001100110011[0011]..,

32764
Fixed Point Representation «—

——— e

« float > 32 bits; double - 64 bits
« We might try representing fractional binary numbers by
picking a fixed place for an implied binary point

« “fixed point binary numbers”

« Let'sdothat, usingibi‘t floating point numbers as an example
« #1: the binary point is between bits 2 and 3
—_ b? bb bf.b-l 3 L1 bz bl b:v -
« #2: the binary point is between bits 4 and 5
b? bb bf- [] b-\ bf bl bl b'd
« The position of the binary point affects the range and precision
- range: difference between the largest and smallest representable
numbers

- precision: smallest possible difference between any two numbers

ashington

What else could we do?

(39w Yo
e Phall

e

shinzton

Fixed Point Pros and Cons

« Pros

« It'ssimple. The same hardware that does integer arithmetic can do fixed
~—=n cware that does integer arithmetic ¢

point arithmetic

— In fact, the programmer can use ints with an implicit fixed point
« E.g. int balance; // number of pennies in the account
- intsare just fixed point numbers with the binary point to the right of b,
« Cons
+ Thereisno good way to pick where the fixed point should be
- Sometimes you need range, sometimes you need precision. The more
you have of one, the less of the other

Floating Point Representation

. o
« Numerical Form:) ',//‘ can he W’”“u 2l

(1) m 2¢
« Sign bit s detérmines whether number is negative or positive
« Significand (mantissa) M normally a fractional value in range [1.0,2.0).
« Exponent E weights value by power of two

« Encoding
« MSB s is sign bit s
+ fracfield encodes M (but is not equal to M)
encodes V
« exp field encodes E (but is not equal to E)

[/
— @exp [frac
-t

{.

IEEE Floating Point N -

—_—— g .

m Fixing fixed point: analogous to scientific notation -
" Not 12000000 but 1.2 x 1077; not 0.0000012 but 1.2 x 1076
m |EEE Standard 754
" Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
® Supported by all major CPUs
m Driven by numerical concerns
" Nice standards for rounding, overflow, underflow
" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in
defining standard

Precisions

m Single precision: 32 hits
[s]exp [frac

e =

m Double precision: 64 bits

[sTexp [frac
1 11 52
— —_—
n Extended precision: 80 bits (Intel only)
[s]exp [frac
1 15 63 or 64

ashington

Normalization and Special Values

« “Normalized” means mantissa has form 1.xxxxx
« 0.011 x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

« Since we know the mantissa starts with a 1, don't bother to store it
o—

« How do we do 0? How about 1.0/0.0?
—

ashington

How do we do operations?

m Is representation exact? V“Oj

m How are the operations carried out?

Floating Point Multiplication

(_1)51 -’m ZEI l (_1)!2 Mz ZEZ
m Exact Result: (-1)° M 2F

" Signs: sins2 &

" Significand M: M1* M2

" Exponent E: E1+E2 P
m Fixing

- If M 2 2, shift M right, increment £
" |f Eout of range, averflow
" Round M to fit frac precision

= Implementation
" What is hardest?

shinzton

Normalization and Special Values

« “Normalized” means mantissa has form 1.xxxxx
« 0.011 x 2°and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

« Since we know the mantissa starts with a 1, don't bother to store it

« Special values:
+ The float value 00...0 represents zero
o Iftheexp== 1]?3.—and the mantissa == 00...0, it represents «
. Eg.100/00%
«If the exp == 11...1 and the mantissa != 00...0, it represents NaN
+ “Not a Number”
« Results from operations with undefined result
- Eg,0%x»

Floating Point Operations: Basic Idea

m X +; Round(x + vy)

I
]

Xty Round(x * y)

m Basicidea
= First compute exact result
" Make it fit into desired precision
= Possibly overflow if exponent too large

= Possibly round to fit into frae
R

Floating Point Addition

(1) M1 28 + (-1)2 M2 2%2
Assume E1 > E2

[£1-£2 —
m Exact Result: (-1)* M 2¢
" Sign s, significand M:
» Result of signed align & add
" Exponent £: El [(-1F M]

m Fixing
B f M 22, shift M right, increment £
" if M < 1, shift M left k positions, decrement £ by k
" Qverflow if E out of range
" Round M to fit frae precision

Hmm... if we round at every operation...

(o e

Floating Point in C

- float single Ereciswon %Z
—s double double precision GY
—

doi(e .l}
rL“J‘ 4’: I.°I'
d= (Lovhle) [-

. ’
iv i iwg) I
Conversions/Casting ’
" Casting between int, float, and double changes bit representation
" Double/float > int

= Truncates fractional part

C Guarantees Two Levels

= Like rounding toward zero

= Not defined when out of rapge or NaN: Generally sets to TMin
" int - double

= Exact conversion, why?
" int - float

= Will round according to rounding mode

Floating Point and the Programmer

#include <stdio.h>

int main(int arge, char* argv[]} {

- float £1 = 1.0;v
~2float £2 = 0.0; L’

int i;

for (i=0; i<l0; i++) {

(

printf ("0x308x Ox308x\n’ , “'(inl')&fs', *(int*)&£?) ;
(printf("fl %10.B£\n", £1))

-

£2 += 1.0/10.0;
)
o #22 1 0000...

printf (*£2 = %10.8f\n\n', £2);

£1 - 1E30;

£2 = 1E-30;

float £3 - £1 + £2;

printf ("f1 == £32 $s\n", f1 = £3 2 "yes' : "m0’):
—_—

zeturn 0;

athematical Proper

m Not really associative or distributive due to rounding
1220C1ative or UisTriviuve

m Infinities and NaNs cause issues

m Overflow and infinity

Memory Referencing Bug (Revisited)

double fun(iat i

(

ls volatile double d[1] = {3.14};

| volatile long int af[2]; ™

_l— ari1 = 1073741824; /* Possibly out of bounds */
—>return d[ol;

)

o fun(0) 3.14
= fun(1) 3.14
-—,,fnn(?) 3.1399998664856
-3 fun(3) 2.00000061035156
_p fun(d) — 3.14, then segmentation fault 4o
a2
Explanati 4 = -
xplanation: saved Stats
p 2 < " <2
d7 d4 3
Location accessed by
AS—eed0 2
A £un (i)
all] w1
alo] w0

Floating Point and the Programmer

#include <stdio.h>
int main(int arge, char* argv[]} {

float £1
float £2
int i;

for (i=0; i<10; i++) {
£2 += 1.0/10.0;
4 S~——"
printf ('0x808x Dx%08xyn", *(int*)&F1, *(int*)&f2);

=1.0;
=0.0

§ ./a.out

printf("f1 = 310.8F\n", £1); '~ 0x3£B00000 0x3£800001
printf("£2 = $10.8F\n\n", £2); £1 = 1.000000000
£2 = 1.000000119

£1 - 1E30;

£2 = 1E-30;

float £3 = £1 + £2;

printf ("f1 -- £3? $s\n", £1 - £3 2 'yes' : "no’);

= £3? yes

zeturn 0;

Summary

« As with integers, floats suffer from the fixed number of bits
available to represent them
« Can get overflow/underflow, just like ints

« Some “simple fractions” have no exact representation
« E.g.,01

« Can also lose precision, unlike ints

« “Every operation gets a slightly wrong result”

« Mathematically equivalent ways of writing an expression may
compute differing results

« NEVER test floating point values for equality!

