

CSE 351
Section 3: The x86 ISA

Aaron Miller
David Cohen
Spring 2011

Section Outline

● x86
● C → x86 Exercise
● Debugging w/ GDB
● HW 1 Questions

x86

● x86 is a family of ISAs based on the
architecture of the Intel 8086 CPU

● Provides abstractions for programmers
● Instructions
● CPU register access

● Accumulator styled ISA
● addl %eax, %edx # EDX += EAX

x86 - Registers
● 8 addressable registers

● eax – gen. purpose register also used for function return values
● ebx – gen. purpose register also used to hold array/string base address
● ecx – gen. purpose register also used for counting
● edx – gen. purpose register also used for array data
● edi – gen. purpose register also used for src array/string index
● esi – gen. Purpose register also used for dest array/string index
● esp – contains stack pointer... more later
● ebp – contains frame pointer... more later

● Inaccessible registers, managed via instructions
● eip – instruction pointer
● flags – set for performing value comparison
● cs, ds, es, ss – Segment registers for memory addressing

x86 Basics – Register Structure

● Can access different bit ranges of the registers
● Use special names

● Ex: least significant byte of eax is “al”

● Details: http://en.wikipedia.org/wiki/X86#Structure

http://en.wikipedia.org/wiki/X86#Structure

X86 Basics - Instructions
● Arithmetic

● add, sub, mul, idiv

● Logical / Bitwise
● and, or, xor, neg, sal/shl, sar/shr

● Control
● jmp, je, jne, jg, jl, jle, jge
● Use after test or cmp instruction

– test – bitwise AND which sets flags

– cmp – subtraction which sets flags

● ret – used to return from a function

● Other
● Stack insns: push, pop
● Data manipulating: mov, enter, leave

X86 Basics – Data Sizes

● Instructions take a data size specifier as their
last character
● L – operate on 4 bytes

– Ex: addl, pushl, movl, cmpl
● B – operate on least significant byte

– Ex: movb, cmpb, testb

● Need to be combined with appropriately named
operands!
● Ex: addl %edx, %eax → valid!

 cmpb %eax, %cl → invalid!

C → x86 Exercise
● Implement body of strcmp(), a standard C function

for comparing two ASCII-encoded strings in x86
● Work in groups of 2 - 4
● C Implementation:

int strcmp(char* a, char* b) {
while(*a && *b) {

if(*a != *b)

break;
a++;

b++;

}

return *a - *b;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

