CSE 351 — Section 7:
Caching & Processes
Aaron Miller

David Cohen
Spring 2011

University of Washington

University of Washington

The Memory Mountain

Read throughput (MB/s)
1200 T

Pentium Il Xeon

550 MHz

16 KB on-chip L1 d-cache

16 KB on-chip L1 i-cache

512 KB off-chip unified L2 cache

1000

800 —

600 —

400

200

AN
wn hop) . .
Stride (words) ; Working set size (bytes)

X
N
-~
Yp]

53

Example: Array Copy (HWO)

int src[2048][2048];
int dst[2048] [2048];

/* Row-major */
int i, j;

for(i = 0; i < 2048;

dst[i] []]

}
}

/* Column-major */
for(j = 0; j < 2048;

dst[i] []]

}

i++) {

for(j = 0; j < 2048; j++) {

src[i]l [j];

J++) |

for(i = 0; 1 < 2048; i++) {

src[i] [j];

L1 Cache:

32 KB
2-way set associative
16 B blocks

1. What are the hit and miss rates for the two different loops?
2. Assuming a miss penalty of 4 cycles, what is the Avg. Memory
Access Time (AMAT) for the different loops?

Optimizations for the Memory Hierarchy

m Write code that has locality
= Spatial: access data contiguously
= Temporal: make sure access to the same data is not too far apart in
time
m How to achieve?
= Proper choice of algorithm
= Loop transformations

m Cache versus register-level optimization:
" |n both cases locality desirable

= Register space much smaller
+ requires scalar replacement to exploit temporal locality

= Register level optimizations include exhibiting instruction level
parallelism (conflicts with locality)

54

University of Washington

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
=0

for (j 7 J < n; j++)
for (k = 0; k < n; k++)
cli*n + j] += a[i*n + k]*b[k*n + j];
}
j
C a b
e 3

55

University of Washington

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
" Cache block = 8 doubles

" Cache size C << n (much smaller than n)

m First iteration: r ~N

" n/8+n=9n/8 misses
(omitting matrix c)

I
*

= Afterwards in cache: . ——
(schematic)

]
*

8 wide
56

University of Washington

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
" Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m Other iterations: r

n
A
n/8 + n =9n/8 misses

]
*

(omitting matrix c)

8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

57

University of Washington

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (31 = j; jl < j+B; Jj++)
for (k1 = k; k1l < k+B; k++)
c[il*n + jl] += a[il*n + kl]*b[kl*n + j1l];

j1
C a b C
- * +
L] i1 [A

Block size B x B

58

University of Washington

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Four blocks B fit into cache: 4B2< C

m First (block) iteration: ~ Z/kB bI:Cks
= B2/8 misses for each block B BEREE [
= 2n/B * BY/8 = nB/4 _ . m
(omitting matrix c) -]

Block size B x B

= Afterwards in cache] T]

(schematic)

I
*

59

University of Washington

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

.] n/B blocks
m Other (block) iterations: A
= Same as first iteration -
= 2n/B * B2/8 = nB/4 _ HENE. . ;

m Total misses:
" nB/4 * (n/B)? =n3/(4B)

Block size B x B

60

University of Washington

Summary

m No blocking: (9/8) * n3

m Blocking: 1/(4B) * n3

m IfB=8 differenceis4*8*9/8 =36x
m If B=16 differenceis4 * 16 *9 /8 = 72x

m Suggests largest possible block size B, but limit 4B < C!
(can possibly be relaxed a bit, but there is a limit for B)
m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |Input data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

61

