
CSE 351: The 
Hardware/Software Interface

Section 1

Intro, C programming, C tools



Introduction

 I am a fifth-year Masters student in CSE

 Graduated last quarter with a degree in Computer 

Engineering

 Interests include embedded software and systems 

engineering
 Third time being a TA for CSE 351

My office hours will be on Monday from 12:30-1:20 

in the 002 lab, but you can always schedule an 

appointment with me

 Contact: discussion board or by email (madman2@cs)

1/10/13 2



Course Tools

Use whatever works best for you: the CSE home 

VM, attu, the instructional Linux machines, or 

your own Linux installation (we won’t provide 

support if you go this route, though)

From pretty much any machine, you can use 

PuTTY (Windows) or an SSH client (OS X, Linux, 

iOS, Android, etc.) to access attu

 Via SSH: ssh [username]@attu.cs.washington.edu

1/10/13 3

http://www.cs.washington.edu/lab/software/homeVMs/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


Course Tools

We’ll be using the GNU C Compiler (gcc) for 

compiling C code in this course, which is 

available on pretty much every platform 

except Windows (unless through Cygwin)

For an editor, use whatever makes you 

comfortable; Emacs, Vim, gedit, and Eclipse 

are good choices

1/10/13 4



Unix Commands

We’re going to assume that you know some basic 
Unix commands; there are many guides online if you 
need additional help such as this one

 cd: change directory
 Example: cd path/to/directory

 pwd: print working directory
 Example: From my home directory on attu, pwd prints out 

/homes/iws/snowden

 ls: list directory contents
 Example: ls .. (list the directory one above this one)

 chmod: change mode (permissions)
 Example: chmod +x file (make file executable)

1/10/13 5

http://www.cs.washington.edu/education/courses/cse390a/12au/lectures/1/390aLecture01_12au.pdf


Compiling C Code

 There are two steps to get from a C source file to an 

executable file: compiling and linking

 To compile a source file with GCC, use the -c option:
gcc -c example.c

 This will produce a corresponding example.o file, which 

contains the machine code for the example.c source file

 To link object files into an executable with GCC, list 

them as arguments: gcc -o example example.o […]

 Here the -o option specifies what to name the output; it 

will be an executable file called “example”

1/10/13 6



Compiling C Code

 It’s also possible to combine the two steps: gcc -o 

example example.c

 This will accomplish both the compilation and the linking 
at once

 Why might it be a good idea to separate these two steps?

 GCC takes a number of flags, which you will see/have 
seen with lab 0
 -g to include debugging symbols
 -Wall to warn about all recognized problems
 -std=gnu99 to use the C99 standard instead of the C89 

standard, which is just a couple years out of date
 Example: gcc -g -Wall -std=gnu99 -o example 

example.c

1/10/13 7



A Basic C Program

The Hello World of C:
#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

1/10/13 8



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

The first line is a header inclusion

Headers provide declarations (but not normally 

definitions) of other code

 stdio.h contains the declaration of the printf

function, which is used for printing to the console

1/10/13 9



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

On Linux, you can look under /usr/include to 

see the contents of these header files

To refer to headers that aren’t part of “special” 

directories, put the path to them in quotes

 As an example, #include "path/to/header.h"

1/10/13 10



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

The next part of the file is the declaration of the 

entry point for the program: main()

 main() takes two parameters, the first of which is the 

number of strings contained in the second parameter. 

argv is an array of the arguments to the program

1/10/13 11



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

The printf() function prints to the console. 

It is equivalent to Java’s System.out.printf()

and requires that you insert a newline 

explicitly

1/10/13 12



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

Finally, return 0 indicates the status code of the 
program when it exits

A status code of 0 indicates success, whereas 
other numbers have a different meaning
 errno.h includes the names of many status codes, 

which are documented in “man errno”

1/10/13 13



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

Let’s compile and run the program

1/10/13 14



Formatting Output

 In C, there is no easy way to concatenate strings 

as there is in Java. Instead, printf() supports a 

number of format codes

Example: int val = 10; printf("%d\n", val);

 %d is the format code for ints, so the above code will 

print “10” with a newline

Other format codes: %f for floats and doubles, 

%s for strings, %x for hexadecimal values, %p for 

pointers. See the cplusplus site for more info
1/10/13 15

http://www.cplusplus.com/reference/cstdio/printf/


Formatting Output

A few different scenarios:
printf("There are %d students enrolled "

"in the class\n", 88);

printf("The course number for this "

"class is %s\n", "CSE 351");

printf("If you want a %f in %s, you’ll "

"need to work for it\n", 4.0,

"CSE 351");

1/10/13 16



Man Pages

Much of the functionality of Linux is 

documented in man pages. Man pages are 

manuals describing how a variety of 

commands, functions, and so forth work

As an example, take a look at man ssh. This 

describes how the ssh command works

For C functions, look in section 3; that is, use 

man 3 [topic], so man 3 printf for the 

printf() function
1/10/13 17



Debugging

The best way of debugging C programs is to 

use GDB (not printf statements!)

GDB is the GNU debugger, and it does a 

variety of amazing things. To use it, compile 

your program using the -g option (to include 

debugging symbols) and then run in under 

GDB with gdb ./example

Let’s run the hello world program from 

before under GDB
1/10/13 18



Debugging

 Use the “p” (print) command within GDB to print out 
values of variables and their addresses

 Use the “b” (breakpoint) command to set a breakpoint at 
a particular line/file/function, e.g. “b 79” to break 
execution at line 79 in the current file

 Use the “c” (continue) command to resume execution 
after hitting a breakpoint

 Use the “d” (delete breakpoint) command to remove 
breakpoints, e.g. “d 1” to delete breakpoint 1

 Use the “list” command to output the code with line 
numbers in the current file. “list [line-#]” will list code 
from the given line; press Enter to see more code

1/10/13 19



Debugging

Use the “x” (examine) command within GDB 
to examine memory at a certain address 
(more useful in later labs)

Use the “r” (run) command to execute the 
program

Use the “s” (step) command within GDB to 
execute one C statement

Use the “n” (next) command to execute one 
C statement, skipping over function calls

1/10/13 20



Debugging

Use the “bt” (backtrace) command within GDB 
to print out the current call stack

Use the “frame” command jump to the 
indicated stack frame, e.g. “frame 3” for stack 
frame 3. Use this in combination with the “bt” 
command

When setting breakpoints, you can specify a 
condition so that the debugger only breaks if 
the condition is met, e.g. “b example.c:83 if x == 
10” will set a breakpoint at line 83 of example.c
that will activate only when x is 10

1/10/13 21



Your Turn

Working in pairs/groups, download the two .c 
files for this section from the course website
and use GDB to debug and fix the problems 
using the techniques given in the source files
 Work first on conditional.c, then on backtrace.c

 Alternatively, if you haven’t completed lab 0, now 
would be a good time to do it

Be sure to ask for help if needed!

GDB Cheat Sheet:
 http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

1/10/13 22

http://courses.washington.edu/cse351/14wi/sections/section-0.tar.gz
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

