CSE 351: The Hardware/Software Interface

Section 2

Integer representations, two's complement, and bitwise operators

Introduction

* CE ugrad (SP14) / 5 ${ }^{\text {th }}$ year CSE Masters student * Computer architecture, HW/SW Interface, digital design * SAMPA - Approximate Computing / NPU
* Experience
* TA for CSE 351 (WI13) and CSE 352 (AU13)
* Amazon
* Lockheed Martin Aeronautics
* OH: Wed 2:30-3:20 in CSE 002, or by appointment
* Contact: discussion board or email (wysem@cs)

Integer representations

* In addition to decimal notation, it's important to be able to understand binary and hexadecimal representations of integers
* Decimal: 3735928559
* No prefix, just the number
* Binary: Ob11011110101011011011111011101111
* "Ob" prefix denotes binary notation
* Hexadecimal: OxDEADBEEF
* "0x" prefix denotes hexadecimal notation Which notation is the most compact of the three? Why use one over another?

Binary scale

* Each digit in binary notation is either Ob0 (zero) or Ob1 (one)
To convert from (unsigned) binary to decimal notation, take the sum of the nth digit multiplied by 2^{n-1}
* As an example, 0b1101 = $1^{*} 2^{3}+1{ }^{*} 2^{2}+0 * 2^{1}+$

$$
1 * 2^{0}=8+4+0+1=13
$$

Binary scale

* To convert from decimal to binary, use a combination of division and modulus to get each digit, tracking the remainder
* As an example, let's convert 11 to binary
* $\left(11 / 2^{0}\right) \% 2=1$, so the first digit is 0b1. Remainder is 11 1 * $2^{0}=10$
* $\left(10 / 2^{1}\right) \% 2=5 \% 2=1$, so the second digit is 0b1. Remainder is $10-1^{*} 2^{1}=8$
* $\left(8 / 2^{2}\right) \% 2=4 \% 2=0$, so the third digit is $0 b 0$. Remainder is $8-0 * 2^{2}=8$
* $\left(8 / 2^{3}\right) \% 2=1 \% 2=1$, so the fourth digit is 0b1
* Finally, we have that 11 is 0b1011 in binary

Hexadecimal scale

* Each digit ranges in value from 0x0 (zero) to 0xF (fifteen)
* $\mathrm{A}=>$ ten, B => eleven, C => twelve, D => thirteen, E => fourteen, $\mathrm{F}=>$ fifteen
To convert from (unsigned) hexadecimal to decimal notation, take the sum of the nth digit multiplied by 16^{n-1}
* As an example, OxACE $=0 x A * 16^{2}+0 x C * 16^{1}+$ $0 x E * 16^{0}=10 * 256+12 * 16+14=2766$

Hexadecimal scale

* The decimal to hexadecimal conversion is the same process as decimal to binary except with 2 instead of 16
* As an example, let's convert 3254 to hexadecimal
* ($3254 / 16^{0}$) \% $16=6$, so first digit is 0×6. Remainder is 3254 0×6 * $16^{0}=3248$
* (3248 / 16^{1}) \% $16=203 \% 16=11=0 x B$, so second digit is $0 x B$. Remainder is $3248-0 \times B$ * $16^{1}=3248-176=3072$
* $\left(3072 / 16^{2}\right) \% 16=12 \% 16=12=0 x C$, so third digit is $0 x C$
* Finally, we have that 3254 is 0xCB6 in hexadecimal

If we were to write a program to convert from decimal to binary or to hexadecimal, how could we compute the nth digit efficiently using bitwise operators and modulus (\%)?

Two's complement review

* In class, we established that two's complement is a nice format for representing signed integers for a couple different reasons. What were they? $-22^{-1} 11110000^{0}+1$

Two's complement review

* Let's say that we want to encode -5 in binary using two's complement form and four bits
* With four bits, the highest bit has a negative weight of 2^{3}, so 0b1000 $=-8$
* $-5=-8+2+1$
$=1$ * $-2^{3}+0 * 2^{2}+$
$1^{*} 2^{1}+1^{*} 2^{0}$
$=10 \mathrm{~b} 1011$
* $5=4+1$
$=0 *-2^{3}+1 * 2^{2}+0 * 2^{1}+$ 1 * 2^{0}
= 0b0101

Operator review

* ~ is arithmetic not (flip all bits)
* Example: ~0b1010 = 0b0101
* ! is logical not (1 if $0 b 0$, else 0)
* Example: ! 0 b100 $=0,!0 b 0=1$
* \& is bitwise and
* Example: 0b101 \& 0b110 = 0b100
* | is bitwise or
* Example: 0b101 | 0b100 = 0b101
>> is bitwise right shift
* Example: 0b1010 >> 1 = 0b1101, 0b0101 >> 1 = 0b0010
<< is bitwise left shift
* Example: 0b1010 << $1=0 b 0100,0 b 1000 \ll 1=0 b 0000$

Operator uses

* Can express negation in terms of arithmetic not and addition
* For example, ~4 + 1 = ~0b0100 + $1=0 b 1011+1=-5+1=$ -4
* Can use shifting, bitwise and, and logical not to detect if a particular bit is set
* As a simple example, !!(x \& (0x1 <<1)) evaluates to 1 if the second bit it set in x and 0 otherwise
* Useful for checking if a value is negative
* Can implement ternaries ($\mathrm{x}=\ldots$? _ : __) using bitwise and, bitwise or, and arithmetic not * This has wide-ranging applications in lab 1

Bitwise operators in practice

* Is what we're learning ever useful in practice?
* Thankfully (or not, depending on how you look at it), it is
* Setting bits in permission strings
* For example, to choose the permissions for chmod using octal codes
* chmod 744 <file> = chmod u+rwx,g+r,o+r

Packing and unpacking

* Let's say that you have values x, y, and z that take 3 , 4 , and 1 bit to represent, respectively
* Is there a way to store these three values using only eight bits?
* In C, we can define a struct that specifies the width in bits of each value
* ...though the compiler will add padding to make the struct a certain size if you don't do so yourself
* In Java, there are no structs, and we have to use bitwise operators

Packing and unpacking (C)

```
#include <stdio.h>
typedef struct {
    int x : 3;
    int Y : 4;
    int z : 1;
    int padding : 24;
} Flags;
int main(int argc, char* argv[]) {
    Flags flags = {3, 8, 1, 0x8fffff};
    printf("sizeof(flags) is %ju and it stores 0x%x\n",
        sizeof(flags), *(int*) &flags);
    return 0;
}
```


Packing and unpacking (Java)

```
// Pack some values into a byte
byte bitValue = 0;
bitValue |= 3;
bitValue |= 8 << 3;
bitValue |= 1 << 7;
```

// Unpack the values from the byte
byte $x=$ bitValue \& $0 x 7$;
byte $y=$ bitValue \& $0 x 78$;
byte $z=$ bitValue \& $0 x 80$;
// Alternatively, we could have shifted a particular
// mask instead, e.g. ($0 \times 1 \ll 7$) instead of 0×80

Lab 1 hints

* Decompose each problem into smaller problems
* If you are stuck on how to solve something, write it as a combination of functions and boolean logic * Over time, replace each function or boolean operator with a combination of permitted operators
* Hint for detecting overflow: what is the sign of the integer produced by adding TMax to a positive value? What about when adding negative numbers?
Hint for counting bits: consider multiple bits at once. 40 operations isn't enough to check each individually

