CSE 351: The Hardware/Software Interface Section 2

Integer representations, two's complement, and bitwise operators

Introduction

- * CE ugrad (SP14) / 5th year CSE Masters student
 - * Computer architecture, HW/SW Interface, digital design
 - * SAMPA Approximate Computing / NPU

* Experience

- * TA for CSE 351 (WI13) and CSE 352 (AU13)
- * Amazon
- * Lockheed Martin Aeronautics
- * OH: Wed 2:30-3:20 in CSE 002, or by appointment
 - * Contact: discussion board or email (wysem@cs)

Integer representations

* In addition to decimal notation, it's important to be able to understand binary and hexadecimal representations of integers * Decimal: 3735928559 ***** No prefix, just the number * Binary: 0b1101111010101011011111011101111 * "0b" prefix denotes binary notation **Hexadecimal:** 0xDEADBEEF * "0x" prefix denotes hexadecimal notation * Which notation is the most compact of the three? Why use one over another?

Binary scale

 \star Each digit in binary notation is either 0b0 (zero) or Ob1 (one) * To convert from (unsigned) binary to decimal notation, take the sum of the *n*th digit multiplied by 2ⁿ⁻¹ $1 + 2^0 = 8 + 4 + 0 + 1 = 13$

Binary scale

- * To convert from decimal to binary, use a combination of division and modulus to get each digit, tracking the remainder
- * As an example, let's convert 11 to binary
 - * (11 / 2⁰) % 2 = 1, so the first digit is 0b1. Remainder is 11 -1 * 2⁰ = 10
 - * (10 / 2¹) % 2 = 5 % 2 = 1, so the second digit is 0b1.
 Remainder is 10 1 * 2¹ = 8
 - * $(8/2^2)$ % 2 = 4 % 2 = 0, so the third digit is 0b0. Remainder is 8 - 0 * 2^2 = 8

* $(8 / 2^3)$ % 2 = 1 % 2 = 1, so the fourth digit is 0b1

* Finally, we have that 11 is 0b1011 in binary

Hexadecimal scale

*Each digit ranges in value from 0x0 (zero) to OxF (fifteen) \star A => ten, B => eleven, C => twelve, D => thirteen, E => fourteen, F => fifteen *To convert from (unsigned) hexadecimal to decimal notation, take the sum of the *n*th digit multiplied by 16ⁿ⁻¹ ***** As an example, $0xACE = 0xA * 16^{2} + 0xC * 16^{1} + 0xC * 1$ OxE * 16⁰ = 10 * 256 + 12 * 16 + 14 = 2766

Hexadecimal scale

- * The decimal to hexadecimal conversion is the same process as decimal to binary except with 2 instead of 16
- * As an example, let's convert 3254 to hexadecimal
 - * (3254 / 16⁰) % 16 = 6, so first digit is 0x6. Remainder is 3254 0x6 * 16⁰ = 3248
 - * (3248 / 16¹) % 16 = 203 % 16 = 11 = 0xB, so second digit is 0xB.
 Remainder is 3248 0xB * 16¹ = 3248 176 = 3072
 - * (3072 / 16²) % 16 = 12 % 16 = 12 = 0xC, so third digit is 0xC
 - * Finally, we have that 3254 is 0xCB6 in hexadecimal
- If we were to write a program to convert from decimal to binary or to hexadecimal, how could we compute the nth digit efficiently using bitwise operators and modulus (%)?

Two's complement review

 \star In class, we established that two's complement is a nice format for representing signed integers for a couple different 0 reasons. What were they? - 2 1111 +10000 1110 0001 - 3 + 21101 0010 0011 1100 1011 0100 - 5 1010 0101 - 6 + 5 0110 1001 10000111 + 6

+ 7

8

Two's complement review

 Let's say that we want to encode -5 in binary using two's complement form and four bits
 With four bits, the highest bit has a negative weight of 2³,

so 0b1000 = -8

<pre>* -5 = -8 + 2 + 1 = 1 * -2³ + 0 * 2² + 1 * 2¹ + 1 * 2⁰ = 10b1011 * 5 = 4 + 1</pre>	$ \begin{array}{r} -1 \\ -2 \\ 1111 \\ -3 \\ 1101 \\ -4 \\ 1100 \end{array} $	0 0000 + 1 0001 - 0010 0011
= $0 * -2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0$ = 0b0101	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0100 0101 0110 - 0111 + 6 + 7

Operator review

 $* \sim$ is arithmetic not (flip all bits) ***** Example: ~0b1010 = 0b0101 *! is logical not (1 if 0b0, else 0) ***** Example: !0b100 = 0, !0b0 = 1* & is bitwise and ***** Example: 0b101 & 0b110 = 0b100 * | is bitwise or ***** Example: 0b101 | 0b100 = 0b101 * >> is bitwise right shift ***** Example: 0b1010 >> 1 = 0b1101, 0b0101 >> 1 = 0b0010 * << is bitwise left shift * Example: 0b1010 << 1 = 0b0100, 0b1000 << 1 = 0b0000</p>

Operator uses

 Can express negation in terms of arithmetic not and addition

* For example, ~4 + 1 = ~0b0100 + 1 = 0b1011 + 1 = -5 + 1 = -4

* Can use shifting, bitwise and, and logical not to detect if a particular bit is set

* As a simple example, !!(x & (0x1 << 1)) evaluates to 1 if the second bit it set in x and 0 otherwise

* Useful for checking if a value is negative

Can implement ternaries (x = ___? ___: __) using

bitwise and, bitwise or, and arithmetic not

* This has wide-ranging applications in lab 1

Bitwise operators in practice

- * Is what we're learning ever useful in practice?
 - * Thankfully (or not, depending on how you look at it), it is
 - * Setting bits in permission strings
 - For example, to choose the permissions for chmod using octal codes
 - * chmod 744 <file> = chmod u+rwx,g+r,o+r

Packing and unpacking

- * Let's say that you have values x, y, and z that take 3,4, and 1 bit to represent, respectively
- * Is there a way to store these three values using only eight bits?
- * In C, we can define a struct that specifies the width in bits of each value
 - ...though the compiler will add padding to make the struct a certain size if you don't do so yourself
- In Java, there are no structs, and we have to use bitwise operators

Packing and unpacking (C)

#include <stdio.h>

```
typedef struct {
    int x : 3;
    int y : 4;
    int z : 1;
    int padding : 24;
} Flags;
```

```
int main(int argc, char* argv[]) {
  Flags flags = {3, 8, 1, 0x8fffff};
  printf("sizeof(flags) is %ju and it stores 0x%x\n",
      sizeof(flags), *(int*) &flags);
```

return 0;

}

Packing and unpacking (Java)

// Pack some values into a byte
byte bitValue = 0;
bitValue |= 3;
bitValue |= 8 << 3;
bitValue |= 1 << 7;</pre>

// Unpack the values from the byte
byte x = bitValue & 0x7;
byte y = bitValue & 0x78;
byte z = bitValue & 0x80;

// Alternatively, we could have shifted a particular
// mask instead, e.g. (0x1 << 7) instead of 0x80</pre>

Lab 1 hints

* Decompose each problem into smaller problems * If you are stuck on how to solve something, write it as a combination of functions and boolean logic * Over time, replace each function or boolean operator with a combination of permitted operators * Hint for detecting overflow: what is the sign of the integer produced by adding TMax to a positive value? What about when adding negative numbers? * Hint for counting bits: consider multiple bits at once. 40 operations isn't enough to check each individually