
CSE 351: The 
Hardware/Software Interface

Section 7

Caches, lab 4



Caches

Caches speed up accesses to memory 

through temporal and spatial locality

Temporal locality in caches: recently-

accessed data is more likely to be contained 

in the cache

Spatial locality in caches: if a[i] is pulled into 

the cache, then a[i + j] for small j is likely 

to be pulled into the cache too
This depends on the size of cache lines, though

2/19/2014 2



Temporal locality example

 Pretend that the following code is executed more-or-

less as written (with result, b, and c in registers):
int example(int* a, int b, int c) {

int result = *a;

result += b;

result += c;

result += *a;

return result;

}

 *a is likely to be in the cache already going into the 

second access, so there is no need for the CPU to 

access memory twice (due to a cache hit)

2/19/2014 3



Temporal locality example

int example(int* a, int b, int c) {

int result = *a;

result += b;

result += c;

// (generate the Mandelbrot fractal

// to some high recursive depth, e.g.)

result += *a;

return result;

}

 If we perform some memory-intensive operation 

prior to the second access to *a, then *a is less likely 

to be cached when the CPU attempts to read it again 

(resulting in a cache miss)
2/19/2014 4



Spatial locality example

int example(int* array, int len) {

int sum = 0;

for (int i = 0; i < len; ++i) {

sum += array[i];

}

return sum;

}

 Accessing memory causes neighboring memory to be 

cached as well

 If cache lines are 64-bits in size, for example, then 

accessing array[0] will pull array[1] into the cache 

too, so len / 2 memory accesses are required in total

2/19/2014 5



Types of caches

There are a variety of different cache types, 

but the most commonly-used are direct-

mapped caches, set-associative caches, and 

fully-associative caches

Which type to use where depends on size, speed, 

hardware cost, and access pattern considerations

2/19/2014 6



Direct-mapped caches

Direct-mapped caches are hash tables where 

the entries are cache lines (data blocks) of 

size B containing cached memory

2/19/2014 7

*Diagram originally 
from Tom Bergan



Direct-mapped caches

 Addresses are broken up 
into [tag, index, offset]
 tag helps prevent against 

hash collisions
 index specifies which 

data block to access
 offset specifies the offset 

at which to read/write 
data

 The valid bit simply 
indicates whether data 
block contains data

2/19/2014 8



Direct-mapped cache example

 Let’s say we have an address of 8 bits in length (say 
0xF6), where the tag is 2 bits, the index is 4 bits, and the 
offset is 2 bits
 0xF6 = 0b11110110 = [tag, index, offset] = [0b11, 0b1101, 

0b10]
 How big are data blocks? At most how many cache entries 

can be represented? How big are cache entries in total?

 To read from this address in a direct-mapped cache, 
look at the valid bit and tag at line index
 If the valid bit is set and tag matches what is stored there, 

return the data at offset (cache hit)
 Otherwise perform a memory access and store retrieved 

data in the cache (cache miss)

2/19/2014 9



Direct-mapped cache example

 To write to this address in a direct-mapped cache, set 
the valid bit, tag, and data at line index
 Subsequent reads that match this tag will now result in a 

cache hit

 What happens if an entry at that index with a different 
tag already exists?
 Overwrite the tag and data with the new values
 …but this can cause poor performance, since now 

attempting to access the data will result in a cache miss

 Also need to update data stored in memory: can either 
write-through (update on all memory writes) or write-
back (update on cache overwrites due to either 
memory reads or writes)

2/19/2014 10



Set-associative caches

Set-associative caches help to mitigate the 
situation where particular cache lines are 
frequently invalidated
 Which part of the address affects whether such 

invalidations happen?

Addresses are taken to have the same [tag, 
index, offset] form when indexing into set-
associative caches

Each index maps to a set of N cache entries in 
an N-way associative cache

2/19/2014 11



Set-associative caches

2/19/2014 12
*Diagram from Tom Bergan



Set-associative caches

When performing a read from a set-

associative cache, check every entry in the set 

under index
 If an entry has a matching tag and its valid bit is 

set, then return the data at the address’ offset

 If no entry has both a matching tag and valid bit, 

then perform a fetch from memory and add a new 

entry for this address/data

 If all cache entries in a set fill up, pick one of 

them to evict using a replacement policy
2/19/2014 13



Set-associative caches

When performing a write to a set-

associative cache, check every entry in the 

set under index

 If there is an existing entry, simply update it

Otherwise add new entry and (optionally) write 

the data to memory as with direct-mapped 

cache

2/19/2014 14



Set-associative caches

Given addresses of the form [tag, index, 

offset] with s bits for the index and b bits 

for the offset:

There can be at most 2s addressable sets

There are exactly 2b addressable bytes in the 

data blocks

2/19/2014 15



Fully-associative caches

 Instead of having multiple sets of cache 

entries, keep just one
 What are the implications of this in terms of 

hardware costs versus access times?

Fully-associative caches are not very common, 

but the translation lookaside buffer (TLB), 

which facilitates virtual address to physical 

address translation, is one such example
 Expect more on the TLB in operating systems or 

(maybe?) hardware design and implementation
2/19/2014 16



Associativity Trade-offs

Greater associativity
 Pro: results in fewer misses, so the CPU spends less 

time/power reading from slow memory

 Con: searching the cache takes longer (fully 
associative => search the entire cache)

Less associativity
 Pro: searching the cache takes less time (direct-

mapped requires reading only one entry)

 Con: results in more misses, because there are 
fewer spots for each address

2/19/2014 17



Associativity Trade-offs

Direct-mapped cache

Best when the miss penalty is minimal

 Fastest hit times, so the best tradeoff for “large” 
caches

Fully-associative cache

 Lowest miss rate, so the best tradeoff when the 
miss penalty is maximal

2/19/2014 18


