
Quick and Dirty Guide to C
The single best book on C is The C Programming Language by Kernighan and Richie.

CODE:
 Code for execution goes into files with “.c” suffix.
 Shared decl’s (included using #include “mylib.h”) in “header” files, end in “.h”

COMMENTS:
 Characters to the right of // are not interpreted; they’re a comment.
 Text between /* and */ (possibly across lines) is commented out.

DATA TYPES:
 Name! ! Size! Description
 char! ! 1 byte! an ASCII value: e.g. ‘a’ (see: man ascii)
 int/long! 4 bytes !a signed integer: e.g. 97 or hex 0x61, oct 0x141
 long long ! 8 bytes! a longer multi-byte signed integer
 float! ! 4 bytes! a floating-point (possibly fractional) value
 double!! 8 bytes !a double length float
char, int, and double are most frequently and easily used in small programs
sizeof(double) computes the size of a double in addressable units (bytes)
Zero values represent logical false, nonzero values are logical true.
Math library (#include <math.h>, compile with -lm) prefers double.

CASTING:
Preceding a primitive expression with an alternate parenthesized type converts or
“casts” value to a new value equivalent in new type:
 int a - (int) 3.131; ! //assigns a=3 without complaint
Preceding any other expression with a cast forces new type for unchanged value.
 double b = 3.131;
 int a = *(int*)&b; //interprets the double b as an integer (not necessarily 3)

STRUCTS and ARRAYS and POINTERS and ADDRESS COMPUTATION:
Structs collect several fields into a single logical type:
 struct { int n; double root;} s; //s has two fields, n and root
 s.root = sqrt((s.n=7)); //ref fields (N.B. double parens=>assign OK!)
Arrays indicated by right associative brackets ([]) in the type declaration
 int a[10]; //a is a 10int array. a[0] is the first element. a[9] is the last
 char b[]; //in a function header, b is an array of chars with unknown length
 int c[2][3]; //c is an array of 2 arrays of three ints. a[1][0] follows a[0][2]
 Array variables (e.g. a,b,c above) cannot be made to point to other arrays
 Strings are represented as character arrays terminated by ASCII zero.
Pointers are indicated by left associative asterisk (*) in the type declarations:

 char *b; // b is a pointer to a character
 int *c[2]; // c is an array of two pointers to ints (same as int *(c[2]);
 int (*d)[2]; // d is a pointer to an array of 2 integers
 Pointers are simply addresses. Pointer variables may be assigned.
 Adding 1 computes pointer to the next value by adding sizeof(X) for type X
 General int adds to pointer (even 0 or negative values) behave in the same way
Addresses may be computed with the ampersand (&) operator.
 An array without an index or a struct without field computes its address:
 int a[10], b[20]; // two arrays
 int *p = a; // p points to first int of array a
 p = b; // p now points to the first int of array b
 An array or pointer with an index n in square brackets returns the nth value:
 int a[10]; // an array
 int *p;
 int i = a[0]; // i is the first element of a
 i = *a; // pointer dereference
 p = a; // same as p = &a[0]
 p++; // same as p = p+1; same as p=&a[1]; same as p = a+1
 Bounds are not checked; your responsibility not to run off. Don’t assume.
An arrow (-> no spaces!) dereferences a pointer to a field:
 struct { int n; double root; } s[1]; //s is pointer to struct or array of 1
 s->root = sqrt)s->n = 7); //s->root same as (*s).root or s[0].root
 printf(“%g\n”, s->root);

FUNCTIONS:
A function is a pointer to some code, parameterized by formal parameters, that
may be executed by providing actual parameters. Functions must be declared before
they are used, but code may be provided later. A sqrt function for positive n
might be declared as:
 double sqrt(double n) {
 double guess;
 for (guess = n/2.0; abs(n-guess*guess)>0.001; guess = (n/guess+guess)/2);
 return guess;
 }
This function has type double (s*sqrt)(double).
 printf(“%g\n”, sqrt(7.0)); //calls sqrt; actuals are always passed by value
Functions parameters are always passed by value. Functions must return a value.
The return value need not be used. Function names with parameters returns the
function pointer. Thus, an alias for sqrt may be declared:
 double (*root)(double) = sqrt;
 printf(“%g\n”, root(7.0));
Procedures or valueless functions return ‘void’.
There must always be a main function that returns an int.
 int main(int argc, char **argv) OR int main(int argc, char *argv[])
Program arguments may be accessed as strings through main’s array argv with argc
elements. First is the program name. Function declarations are never nested.

OPERATIONS:
 +, -, *, /, %! Arithmetic ops. /truncates on integers, % is remainder.
 ++i --i!! Add or subtract 1 from i, assign result to i, return new val
 i++ i--!! Remember i, inc or decrement i, return remembered value
 && || !!! Logical ops. Right side of && and || unless necessary
 & | ^ ~!! Bit logical ops: and, or, xor, complement.
 >> <<! ! Shift right and left: int n=10; n <<2 computes 40.
 = ! ! Assignment is an operator. Result is value assigned.
 += -= *= etc ! Perform binary op on left and right, assign result to left
 == != < > <= >= Comparison operators (useful only on primitive types)
 ?:! ! If-like expression: (x%2==0)?”even”:”odd”
 ,! ! computing value is last: a, = b,c,d; exec’s b,c,d then a=d

STATEMENTS:
Angle brackets identify syntactic elements and don’t appear in real statements
 <expression> ;!! //semicolon indicates end of a simple statement
 break;!! ! //quits the tightest loop or switch immediately
 continue;! ! //jumps to next loop test, skipping rest of loop body
 return x;! ! //quits this function, returns x as value
 { <statements> } ! //curly-brace groups statements into 1 compound (no ;)
 if (<condition>) <stmt>!//stmt executed if cond true (nonzero)
 if (<condition>) <stmt> else <stmt> // two-way condition
 while (<condition>) <stmt> //repeatedly execute stmt only if condition true
 do <stmt> while (<condition>); //note the semicolon, executes at least once
 for (<init>; <condition>; <step>) <statement>

 switch (<expression>) { ! //traditional “case statement”
 case <value>: <statement>! // this statement exec’d if val==expr
 ! ! break;! ! // quit this when value == expression
 case <value2>: <statement2>! //executed if value2 = expression
 case <value3>: <statement3> //executed if value3 = expression
 ! ! break;! ! // quit
 default: <statement4>!! // if matches no other value; may be first
 ! ! break;! ! // optional (but encouraged) quit
 }

KEY WORDS
 unsigned! before primitive type suggests unsigned operations
 extern!! in global declaration => symbol is for external use
 static!! in global declaration => symbol is local to this file
 ! ! in local decl’n => don’t place on stack; keep value betw’n calls
 typedef! before declaration defines a new type name, not a new variable

 int *a; // a is a pointer to an integer

Quick and Dirty Guide to C
I/O (#include <stdio.h>)
Default input comes from “stdin”; output goes to “stdout”; errors to “stderr”.
Standard input and output routines are declared in stdio.h: #include <stdio.h>
 Function! Description
 fopen(name, “r”) opens file name for read, returns FILE *f; “w” allows write
 fclose(f)! closes file f
 getchar()! read 1 char from stdin or pushback; is EOF (int -1) if none
 ungetch(c)! pushback char c into stdin for re-reading; don’t change c
 putchar(c)! write 1 char, c, to stdout
 fgetc(f)! same as getchar(), but reads from file f
 ungetc(c,f)! same as ungetchar() but onto file f
 fputc(c,f)! same as putchar(c), but onto file f
 fgets(s,n, f)! read string of n-1 chars to a s from f or til eof or \n
 fputs(s,f)! writes string s to f: e.g. fputs(“Hello world\n”, stdout);
 scanf(p,...) ! reads ... args using format p (below); put &w/non-pointers
 printf(p, ...) write ... args using format p (below); pass args as is
 fprintf(f,p,...) same, but print to file f
 fscanf(f,p,...) same, but read from file f
 sscanf(s,p,...) same, but read from string s
 sprintf(s,p,...) same, as printf, but to string s
 feof(f)! return true iff at end of file f
 Formats use format characters preceded by escape %; other chars written as is>
 char! meaning! ! ! ! char! meaning
 %c! character! ! ! \n! newline (control-j)
 %d! decimal integer! ! ! \t ! tab (control-i)
 %s! string! ! ! ! \\! slash
 %g ! general floating point! ! %%! perent

MEMORY (%include <stdlib.h>)
 malloc(n)! alloc n bytes of memory; for type T: p = (T*)malloc(sizeof(t));
 free(p)! free memory pointed at p; must have been alloc’d; don’t re-free
 calloc(n,s)! alloc n-array size s & clear; typ: a = (T*)calloc(n, sizeof(T));

MATH (#include <math.h> and link -lm; sometimes documented in man math)
 All functions take and return double unless otherwise noted:
 sin(a), cos(a), tan(a)! sine, cosine, tangent of double (in radians)
 asine(y),acos(x),atan(r) principle inverse of above
 atan2(y,x)! ! principal inverse of tan(y/x) in same quadrant as (x,y)
 sqrt(x)! ! root of x
 log(x)!! ! natural logarithm of x; others: log2(x) and log10(x)
 exp(p)!! ! e to the power of p; others: exp2(x) and exp10(x)
 pow(x,y)! ! x to the power of y; like (expy*log(x))
 ceil(x)! ! smallest integer (returned as double) no less than x
 floor(x)! ! largest integer (returned as double) no greater than y
 #include <stdlib.h> for these math functions
 abs(x)!! ! absolute value of x
 random()! ! returns a random long
 srandom(seed)! ! seeds the random generator with a new random seed

STRINGS (#include <string.h>)
 strlen(s)! return length of string; number of characters before ASCII 0
 strcpy(d,s)! copy string s to d and return d; N.B. parameter order like =
 strncpy(d,s,n)!copy at most n characters of s to d and terminate; returns d
 stpcpy(d,s)! like strcpy, but returns pointer to ASCII 0 terminarot in d
 strcmp(s,t)! compare strings s and t and return first difference; 0=> equal
 strncmp(s,t,n)!stop after at most n characters; needn’t be null terminated
 memcpy(d,s,n) copy exactly n bytes from s to d; may fail if s overlaps d
 memmove(d,s,n) (slow) copy n bytes from s to d; won’t fail if s overlaps d

COMPILING:
 gcc prog.c! # compiles prog.c into a.out run result with ./a.out
 gcc -o prog prog.c # compiles prog.c into prog; run result with ./prog
 gcc -g -o prog prog.c # as above, but allows for debugging

A GOOD FIRST PROGRAM:
 #include <stdio.h>
 #include <stdlib.h>
 int main(int argc, char** argv){
 printf(“Hello, world.\n”);
 return 0;
 }

A WORD COUNT (WC)
 #include <stdio.h>
 #include <stdlib.h>
 int main(int argc, char **argv){
 int charCount=0, wordCount=0, lineCount=0;
 int doChar=0, doWord=0, doLine=0, inWord = 0;
 int c;
 char *fileName = 0;
 FILE *f = stdin;
 while (argv++, --argc) {
! if (!strcmp(*argv,”-c”)) doChar=1;
! else if (!strcmp(*argv,”-w”)) doWord=1;
! else if (!strcmp(*argv,”-l”)) doLine=1;
! else if (!(f = fopen((fileName = *argv), “r”))){
! printf(“Usage: wc [-l] [-w] [-c]\n”); return 1;
! }
 }
 if (!(doChar || doWord || doLine)) doChar = doWord = doLine = 1;
 while (EOF != (c= fgetc(f))){
! charCount++;
! if (c == ‘\n’) lineCount++;
! if (!iswpace(c)) {
! if (!inWord) { inWord = 1; wordcount++; }
! } else { inWord = 0; }
 }
 if (doLine) printf(“%8d”, lineCount);
 if (doWord) printf(“%8d”, wordCount);
 if (doChar) printf(“%8d”, charCount);
 if (fileName) printf(“ %s”, fileName);
 printf(“\n”);
 }

ADD YOUR NOTES HERE:

Content borrowed and updated (with permission)
from Duane A. Bailey’s guidelines from 2007.

