
CSE351, Autumn 2022L05: Integers II

Integers II
CSE 351 Autumn 2022

Instructor: Teaching Assistants:

Justin Hsia Angela Xu Arjun Narendra Armin Magness

Assaf Vayner Carrie Hu Clare Edmonds

David Dai Dominick Ta Effie Zheng

James Froelich Jenny Peng Kristina Lansang

Paul Stevans Renee Ruan Vincent Xiao

http://xkcd.com/571/

http://xkcd.com/571/

CSE351, Autumn 2022L05: Integers II

Relevant Course Information

❖ hw4 due Monday, hw5 due Wednesday

❖ Lab 1a due Monday (10/10)

▪ Use and to check your solution for
correctness (on the CSE Linux environment)

▪ Submit and to
Gradescope
• Make sure you pass the File and Compilation Check – all the correct

files were found and there were no compilation or runtime errors

❖ Lab 1b released today, due 10/17

▪ Bit manipulation on a custom encoding scheme

▪ Bonus slides at the end of today’s lecture have relevant
examples

2

CSE351, Autumn 2022L05: Integers II

Runnable Code Snippets on Ed

❖ Ed allows you to embed runnable code snippets (e.g.,
readings, homework, discussion)

▪ These are editable and rerunnable!

▪ Hides compiler warnings, but will show compiler errors and
runtime errors

❖ Suggested use

▪ Good for experimental questions about basic behaviors in C

▪ NOT entirely consistent with the CSE Linux environment, so
should not be used for any lab-related work

3

CSE351, Autumn 2022L05: Integers II

Reading Review

❖ Terminology:

▪ , , ,

▪ Type casting: implicit vs. explicit

▪ Integer extension: zero extension vs. sign extension

▪ Modular arithmetic and arithmetic overflow

▪ Bit shifting: left shift, logical right shift, arithmetic right shift

❖ Questions from the Reading?

4

CSE351, Autumn 2022L05: Integers II

Review Questions

❖ What is the value (and encoding) of for a
fictional 6-bit wide integer data type?

❖ For , what are the
produced data for the cast ?

❖ What is the result of the following expressions?

▪

▪

5

CSE351, Autumn 2022L05: Integers II

Integers

❖ Binary representation of integers

▪ Unsigned and signed

▪ Casting in C

❖ Consequences of finite width representations

▪ Sign extension, overflow

❖ Shifting and arithmetic operations

6

CSE351, Autumn 2022L05: Integers II

UMax – 1

0

TMax

TMin

–1

–2

0/UMin

UMax

TMax

TMax + 1

2’s Complement
Range

Unsigned
Range

Signed/Unsigned Conversion Visualized

❖ Two’s Complement → Unsigned

▪ Ordering Inversion

▪ Negative → Big Positive

7

CSE351, Autumn 2022L05: Integers II

Values To Remember (Review)

❖ Unsigned Values
▪ UMin = 0b00…0

= 0

▪ UMax = 0b11…1

= 2𝑤 − 1

❖ Example: Values for 𝑤 = 64

8

❖ Two’s Complement Values
▪ TMin = 0b10…0

= −2𝑤−1

▪ TMax = 0b01…1

= 2𝑤−1 − 1

▪ −1 = 0b11…1

Decimal Hex

UMax 18,446,744,073,709,551,615 FF FF FF FF FF FF FF FF

TMax 9,223,372,036,854,775,807 7F FF FF FF FF FF FF FF

TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00

-1 -1 FF FF FF FF FF FF FF FF

0 0 00 00 00 00 00 00 00 00

CSE351, Autumn 2022L05: Integers II

In C: Signed vs. Unsigned (Review)

❖ Casting

▪ Bits are unchanged, just interpreted differently!
• int tx, ty;

• unsigned int ux, uy;

▪ Explicit casting
• tx = (int) ux;

• uy = (unsigned int) ty;

▪ Implicit casting can occur during assignments or function
calls
• tx = ux;

• uy = ty;

9

CSE351, Autumn 2022L05: Integers II

Casting Surprises (Review)

❖ Integer literals (constants)

▪ By default, integer constants are considered signed integers
• Hex constants already have an explicit binary representation

▪ Use “U” (or “u”) suffix to explicitly force unsigned
• Examples: 0U, 4294967259u

❖ Expression Evaluation

▪ When you mixed unsigned and signed in a single expression,
then signed values are implicitly cast to unsigned

▪ Including comparison operators <, >, ==, <=, >=

10

!!!

CSE351, Autumn 2022L05: Integers II

Expression Evaluation Examples

❖ Assuming 8-bit data (i.e., bit position 7 is the MSB),
what will the following expression evaluate to?

▪

▪

11

CSE351, Autumn 2022L05: Integers II

Integers

❖ Binary representation of integers

▪ Unsigned and signed

▪ Casting in C

❖ Consequences of finite width representations

▪ Sign extension, overflow

❖ Shifting and arithmetic operations

12

CSE351, Autumn 2022L05: Integers II

Sign Extension (Review)

❖ Task: Given a 𝑤-bit signed integer X, convert it to
𝑤+𝑘-bit signed integer X′ with the same value

❖ Rule: Add 𝑘 copies of sign bit

▪ Let 𝑥𝑖 be the 𝑖-th digit of X in binary

▪ X′ = 𝑥𝑤−1, … , 𝑥𝑤−1, 𝑥𝑤−1, 𝑥𝑤−2, … , 𝑥1, 𝑥0

13

𝑘 copies of MSB

• • •X

Xʹ • • • • • •

• • •

𝑤

𝑘 𝑤

original X

CSE351, Autumn 2022L05: Integers II

Two’s Complement Arithmetic

❖ The same addition procedure works for both
unsigned and two’s complement integers

▪ Simplifies hardware: only one algorithm for addition

▪ Algorithm: simple addition, discard the highest carry bit
• Called modular addition: result is sum modulo 2𝑤

14

CSE351, Autumn 2022L05: Integers II

Arithmetic Overflow (Review)

❖ When a calculation produces a result
that can’t be represented in the
current encoding scheme
▪ Integer range limited by fixed width

▪ Can occur in both the positive and negative
directions

❖ C and Java ignore overflow exceptions
▪ You end up with a bad value in your

program and no warning/indication… oops!

15

Bits Unsigned Signed

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

CSE351, Autumn 2022L05: Integers II

Overflow: Unsigned

❖ Addition: drop carry bit (−2N)

❖ Subtraction: borrow (+2N)

16

15

+ 2

17

1

1111

+ 0010

10001

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

Unsigned

1

- 2

-1

15

10001

- 0010

1111

±2N because of
modular arithmetic

CSE351, Autumn 2022L05: Integers II

Overflow: Two’s Complement

❖ Addition: (+) + (+) = (−) result?

❖ Subtraction: (−) + (−) = (+)?

17

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

For signed: overflow if operands have
same sign and result’s sign is different

Two’s
Complement

6

+ 3

9

-7

0110

+ 0011

1001

-7

- 3

-10

6

1001

- 0011

0110

CSE351, Autumn 2022L05: Integers II

Practice Questions

❖ Assuming 8-bit integers:

▪ = 39 (signed) = 39 (unsigned)

▪ = -39 (signed) = 217 (unsigned)

▪ = 127 (signed) = 127 (unsigned)

▪ = -127 (signed) = 129 (unsigned)

❖ For the following additions, did signed and/or
unsigned overflow occur?

▪

▪

18

[TMin, TMax] = [-128, 127]
[UMin, UMax] = [0, 255]

CSE351, Autumn 2022L05: Integers II

Integers

❖ Binary representation of integers

▪ Unsigned and signed

▪ Casting in C

❖ Consequences of finite width representations

▪ Sign extension, overflow

❖ Shifting and arithmetic operations

19

CSE351, Autumn 2022L05: Integers II

Shift Operations (Review)

❖ Throw away (drop) extra bits that “fall off” the end

❖ Left shift () bit vector by positions

▪ Fill with ’s on right

❖ Right shift () bit-vector by positions

▪ Logical shift (for unsigned values)
• Fill with ’s on left

▪ Arithmetic shift (for signed values)
• Replicate most significant bit on left (maintains sign of x)

20

logical:

arithmetic:

logical:

arithmetic:

CSE351, Autumn 2022L05: Integers II

Shift Operations (Review)

❖ Arithmetic:

▪ Left shift () is equivalent to multiply by 2

▪ Right shift () is equivalent to divide by 2

▪ Shifting is faster than general multiply and divide
operations!

❖ Notes:

▪ Shifts by or ≥ (is bit width of) are undefined

▪ In C: behavior of is determined by the compiler
• In gcc / C lang, depends on data type of x (signed/unsigned)

▪ In Java: logical shift is and arithmetic shift is

21

CSE351, Autumn 2022L05: Integers II

Left Shifting Arithmetic 8-bit Example

❖ No difference in left shift operation for unsigned and
signed numbers (just manipulates bits)
▪ Difference comes during interpretation: x*2n?

22

x = 25; 00011001 =

L1=x<<2; 0001100100 =

L2=x<<3; 00011001000 =

L3=x<<4; 000110010000 =

25 25

100 100

-56 200

-112 144

Signed Unsigned

signed overflow

unsigned overflow

signed overflow

CSE351, Autumn 2022L05: Integers II

Right Shifting Arithmetic 8-bit Examples

❖ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
▪ Logical Shift: x/2n?

23

xu = 240u; 11110000 =

R1u=xu>>3; 00011110000 =

R2u=xu>>5; 0000011110000 =

240

30

7

rounding (down)

CSE351, Autumn 2022L05: Integers II

Right Shifting Arithmetic 8-bit Examples

❖ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
▪ Arithmetic Shift: x/2n?

24

xs = -16; 11110000 =

R1s=xu>>3; 11111110000 =

R2s=xu>>5; 1111111110000 =

-16

-2

-1

rounding (down)

CSE351, Autumn 2022L05: Integers II

Exploration Questions

❖ Assume we are using 8-bit arithmetic:

▪ x == (unsigned char) x

▪ x >= 128U

▪ x != (x>>2)<<2

▪ x == -x

• Hint: there are two solutions

▪ (x < 128U) && (x > 0x3F)

25

For the following expressions, find a value of signed char x,
if there exists one, that makes the expression True.

CSE351, Autumn 2022L05: Integers II

Summary

❖ Sign and unsigned variables in C

▪ Bit pattern remains the same, just interpreted differently

▪ Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers
• Type of variables affects behavior of operators (shifting, comparison)

❖ We can only represent so many numbers in 𝑤 bits

▪ When we exceed the limits, arithmetic overflow occurs

▪ Sign extension tries to preserve value when expanding

❖ Shifting is a useful bitwise operator

▪ Right shifting can be arithmetic (sign) or logical (0)

▪ Can be used in multiplication with constant or bit masking

26

CSE351, Autumn 2022L05: Integers II

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

❖ Extract the 2nd most significant byte of an int

❖ Extract the sign bit of a signed int

❖ Conditionals as Boolean expressions

27

CSE351, Autumn 2022L05: Integers II

Using Shifts and Masks

❖ Extract the 2nd most significant byte of an int:

▪ First shift, then mask: (x>>16) & 0xFF

▪ Or first mask, then shift: (x & 0xFF0000)>>16

28

0xFF 00000000 00000000 00000000 11111111

(x>>16) & 0xFF 00000000 00000000 00000000 00000010

x>>16 00000000 00000000 00000001 00000010

x 00000001 00000010 00000011 00000100

x & 0xFF0000 00000000 00000010 00000000 00000000

(x&0xFF0000)>>16 00000000 00000000 00000000 00000010

0xFF0000 00000000 11111111 00000000 00000000

x 00000001 00000010 00000011 00000100

CSE351, Autumn 2022L05: Integers II

Using Shifts and Masks

❖ Extract the sign bit of a signed int:

▪ First shift, then mask: (x>>31) & 0x1

• Assuming arithmetic shift here, but this works in either case

• Need mask to clear 1s possibly shifted in

29

x 00000001 00000010 00000011 00000100

x>>31 00000000 00000000 00000000 00000000

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000000

x 10000001 00000010 00000011 00000100

x>>31 11111111 11111111 11111111 11111111

0x1 00000000 00000000 00000000 00000001

(x>>31) & 0x1 00000000 00000000 00000000 00000001

0

0

1

1

CSE351, Autumn 2022L05: Integers II

Using Shifts and Masks

❖ Conditionals as Boolean expressions
▪ For int x, what does (x<<31)>>31 do?

▪ Can use in place of conditional:
• In C: if(x) {a=y;} else {a=z;} equivalent to a=x?y:z;

• a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

30

x=!!123 00000000 00000000 00000000 00000001

x<<31 10000000 00000000 00000000 00000000

(x<<31)>>31 11111111 11111111 11111111 11111111

!x 00000000 00000000 00000000 00000000

!x<<31 00000000 00000000 00000000 00000000

(!x<<31)>>31 00000000 00000000 00000000 00000000

