YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

x86-64 Programming |

CSE 351 Autumn 2022

Instructor:
Justin Hsia

SKATING UPHILL LIKE THIS l
AMBZING. YEPRS OF GLIDING

. . . WL 9 DOWNHILL AND PUSHING
Teaching Assistants: LA UPHLL ANDNOW SUDOENLY
Angela Xu il

Arjun Narendra

Armin Magness S ke DEPENDS HOW YOU

. TO SPEND YOUR
Assaf Vayner ; Cool ﬁg sg?r?f

. . PSSEMBLY MAKES YOU -
Carrie Hu | ARETTER PROCRANMER. PHILOSOPHY 15

Clare Edmonds

)) | HoW MUCH TIME YQU WERE
David Dai SPENDING ON THE. BORING

.. PaRTs UNTIL YoU DON'T HAWE
Dominick Ta -

Effie Zheng
James Froelich
Jenny Peng
Kristina Lansang
Paul Stevans
Renee Ruan
Vincent Xiao

http://xkcd.com/409/

http://xkcd.com/409/

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Relevant Course Information

+» hw7 due Monday, hw8 due Wednesday

+» Lab 1b due Monday (10/17) at 11:59 pm

= No major programming restrictions, but should avoid magic
numbers by using C macros (#define)

" For debugging, can use provided utility functions
print_binary_short() and print_binary_long()

= Pay attention to the output of aisle_test and
store_test —failed tests will show you actual vs. expected

"= You have late day tokens available

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Reading Review

+» Terminology:
" |nstruction Set Architecture (ISA): CISC vs. RISC
" |nstructions: data transfer, arithmetic/logical, control flow

- Size specifiers: b,w, 1, q
" Operands: immediates, registers, memory

- Memory operand: displacement, base register, index register, scale
factor

% Questions from the Reading?

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Review Questions

+» Assume that the register %rax currently holds the
value OX 01 02 03 04 0506 07 08

+» Answer the questions on Ed Lessons about the
following instruction (<instr> <src> <dst>):
xorw $-1, %ax
" QOperation type:
= Operand types:
= Operation width:
= (extra) Result in %rax:

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

The Hardware/Software Interface

« Topic Group 1: Data /\

Even more applications

" Memory, Data, Integers, Floating Point, :
Arrays, Structs Applications

Programming Languages
& Libraries
«» Topic Group 2: Programs

" x86-64 Assembly, Procedures, Stacks, | Hordware I

Executables

Physics

% Topic Group 3: Scale & Coherence

" Caches, Processes, Virtual Memory,
Memory Allocation

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

The Hardware/Software Interface

+ Topic Group 2: Programs i N

Even more applications

= x86-64 Assembly, Procedures, Stacks, _ :
Executables Applications

Programming Languages
& Libraries

Operating System

| Hardware I
Transistors, Gates, Digital Systems

Physics

+» How are programs created and executed on a CPU?

" How does your source code become something that your
computer understands?

*" How does the CPU organize and manipulate local data?

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= What is directly visible to software
" The “contract” or “blueprint” between hardware and
software

+» Microarchitecture: Implementation of the
architecture
= CSE/EE 469

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

Instruction Set Architectures (Review)

« The ISA defines:

" The system’s state (e.qg., registers, memory, program

counter)

" The instructions the CPU can execute

= The effect that each of these instructions will have on the

system state
CPU

PC

Registers

Memory

CSES351, Autumn 2022

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

General ISA Design Decisions

< |nstructions

" What instructions are available? What do they do?
" How are they encoded?

+» Registers
" How many registers are there?
*" How wide are they?

+» Memory

*" How do you specify a memory location?

CSES351, Autumn 2022

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Instruction Set Philosophies (Review)

+» Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized
instructions as needed

= |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

+ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular
= Easier to build fast hardware

" |et software do the complicated operations by composing
simpler ones

10

YA UNIVERSITY of WASHINGTON

LO8: x86-64 Programming |

Mainstream ISAs

intel,

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

Design CIsC

Type Register—memory
Encoding Variable (1 to 15 bytes)
Branching Condition code

Endianness Little

Macbooks & PCs
(Core i3, i5,i7, M)
X86-64 Instruction Set

ARM

ARM

Designer Arm Holdings
Bits 32-bit, 64-bit
Introduced 1985

Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions; ARMv7 user-
space compatibility.["]

Branching Ceondition code, compare and
branch

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

CSES351, Autumn 2022

RISC

RISC-V
Designer University of California,
Berkeley
Bits 32-64-128
Introduced 2010
Design RISC
Type Load-store
Encoding Variable

Endianness Littlel'I[3]

Mostly research
(some traction in embedded)
RISC-V Instruction Set

11

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Architecture Sits at the Hardware Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Pifferent _
or algorithms generate instructions implementations
fmmmmmmmmm————— - \ Intel Pentium 4
' C Language :
|
' : Intel Core 2
1 | Program fmmmmm———— |
| A i |
| GCC | x86-64 Intel Core i7
I . ____ |
I T
: Program : AMD Opteron
! I
| B
: AMD Athlon
: Clang
|
: Your fmmm——————— |
! | program i ARMvV8 |
| I
l |

|
! ARM Cortex-A53
i :(AArch64/A64) <
________________ o
Apple A7

12

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Writing Assembly Code? In 20227?7??

« Chances are, you’ll never write a program in
assembly, but understanding assembly is the key to
the machine-level execution model:

= Behavior of programs in the presence of bugs
- When high-level language model breaks down

" Tuning program performance

- Understand optimizations done/not done by the compiler

- Understanding sources of program inefficiency
" Implementing systems software

- What are the “states” of processes that the OS must manage

- Using special units (timers, |/O co-processors, etc.) inside processor!
" Fighting malicious software

- Distributed software is in binary form
13

YW UNIVERSITY of WASHINGTON

LO8: x86-64 Programming |

CSES351, Autumn 2022

Assembly Programmer’s View

CPU
PC Registers
Condition
Codes

+ Programmer-visible state

= PC: the Program Counter (%rip in x86-64)

- Address of next instruction

"= Named registers

- Together in “register file”
Heavily used program data

= Condition codes

Addresses Memory
' e Code
D
< ata > - Data
~Instructions * Stack
«» Memory

« Store status information about most recent
arithmetic operation

Used for conditional branching

= Byte-addressable array
" Code and user data

" |ncludes the Stack (for
supporting procedures)

14

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

x86-64 Assembly “Data Types”

K/
0‘0

)
0.0

L/
0‘0

L/
0‘0

Integral data of 1, 2, 4, or 8 bytes
= Data values
= Addresses

Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2 |

= Different registers for those (e.g., %xmm1, %ymm2)
= Come from extensions to x86 (SSE, AVX, ...)

5 Not covered
In 351

No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory
Two common syntaxes

= “AT&T”: used by our course, slides, textbook, gnu tools, ...
= “Intel”: used by Intel documentation, Intel tools, ...
= Must know which you’re reading

15

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Instruction Types (Review)

1) Transfer data between memory and register
" [oad data from memory into register

- %reg=Meml[address] Remember: Memory
is indexed just like an
array of bytes!

= Store register data into memory

- Meml[address] = %reg

2) Perform arithmetic operation on register or memory

data
"= Cc = a + b; z = X << y; i =h & g;

3) Control flow: what instruction to execute next
= Unconditional jumps to/from procedures
= Conditional branches

16

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Instruction Sizes and Operands (Review)

+ Size specifiers
= b =1-byte “byte”, w = 2-byte “word”,
1 = 4-byte “long word”, g = 8-byte “quad word”

= Note that due to backwards-compatible support for 8086
programs (16-bit machines!), “word” means 16 bits = 2 bytes
In Xx86 instruction names

+» Operand types
" I/mmediate: Constant integer data ($)
= Register: 1 of 16 general-purpose integer registers (%

" Memory: Consecutive bytes of memory at a computed
address (())

17

YA UNIVERSITY of WASHINGTON LO8: x86-64 Programming |

CSES351, Autumn 2022

What is a Register? (Review)

« A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with % (e.g., %rsi)

+» Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but
especially x86

18

YW UNIVERSITY of WASHINGTON

x86-64 Integer Registers — 64 bits wide

LO8: x86-64 Programming |

CSES351, Autumn 2022

%rax %eax
%rbx %ebx
%rcx %ecx
%rdx %edx
%rs %esi
%rdi %edi
%rsp %esp
%rbp %ebp

%r8 %r8d
%r9 %rod
%rle %r10d
%rll %rlld
%rl12 %ril2d
%rl3 %r13d
%rl4 %rlad
%rl1b %r15d

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

19

YW UNIVERSITY of WASHINGTON

LO8: x86-64 Programming |

CSES351, Autumn 2022

Some History: IA32 Registers — 32 bits wide

general purpose

A

—

%eax %ax %ah %a’l
%ecx %CX %ch %c 1
%edx %dx | %dh | %dl |
%ebx %bx | %bh | %bl |
%es P
%ed wdi| |
%esp BSP
%ebp %bp

\)

\

16-bit virtual registers
(backwards compatibility)

accumulate
counter

data

base

source index
destination index
stack pointer

base pointer

Name Origin
(mostly obsolete)
20

YW UNIVERSITY of WASHINGTON

Memory

Addresses

" Ox7FFFD0O24C3DC
Big

= ~8@GiB

Slow
= ~50-100 ns

Dynamic

"= Can “grow” as needed
while program runs

vs.

VS.

VS.

VS.

vs.

LO8: x86-64 Programming | CSE351, Autumn 2022

Registers

Names

%rdi

Small
(16 x 8 B) = 128 B

Fast

sub-nanosecond timescale

Static

fixed number in hardware

21

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Moving Data

» General form: mov_ source, destination
= Really more of a “copy” than a “move”
= Like all instructions, missing letter (_) is the size specifier
" | ots of these in typical code

22

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Operand Combinations

Source Dest Src, Dest C Analog
(Reg movqg $0x4, %rax var_a = 0x4;
lmm
Mem movqg $-147, (%rax) xp_a = -147;
movq< Reg Reg movqg %rax, %rdx var_d = var_a;
Mem movqg %rax, (%rdx) xp_d = var_a;
Mem Reg movq (%rax), %rdx var_d = *xp_a;

+» Cannot do memory-memory transfer with a single
instruction

®" How would you do it?
23

YW UNIVERSITY of WASHINGTON

Some Arithmetic Operations

Binary (two-operand) Instructions:

- [Maximum of one]

memory operand

" Beware argument

order!

= No distinction
between signed
and unsigned

« Only arithmetic vs.

logical shifts

addq
subq

imulq

sarq
shrq
shlq
Xorq
andq

orq

src,
src,
src,
src,
src,
src,
src,
src,

src,

LO8: x86-64 Programming |

dst
dst
dst
dst
dst
dst
dst
dst

dst = dst + src
dst = dst —src
dst = dst * src
dst = dst >> src
dst = dst >> src
dst = dst << src
dst = dst " src
dst = dst & src
dst = dst [src

t operand size specifier

CSES351, Autumn 2022

(dst += src)

signed mult
Arithmetic
Logical

(same as salq)

24

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Practice Question

+» Which of the following are valid implementations of
rcx = rax + rbx?

" addq %rax, %rcx " movq %rax, %rcx
addq %rbx, %rcx addq %rbx, %rcx
" movqg $0O, %rcx " Xorq %rax, %rax
addqg %rbx, %rcx addq %rax, %rcx

addqg %rax, %rcx addqg %rbx, %rcx

25

YW UNIVERSITY of WASHINGTON

CSES351, Autumn 2022

Arithmetic Example

LO8: x86-64 Programming |

Cnegiser | Usel)

15t argument (x)
2" argument (y)

return value

Srdi
. . $rsi
long simple arith(long x, long V)
i — srax
long t1 = x + y;
long t2 = tl1 * 3;
return t2;
| ‘k\\\‘\si
y t=
y*:
long

return r;

r =Yy

simple arith:
addq srdi,
imulqg $3,
movq $rsi,
ret

$rsi
$rsi
$rax

26

YW UNIVERSITY of WASHINGTON LO8: x86-64 Programming | CSE351, Autumn 2022

Summary

+ X86-64 is a complex instruction set computing (CISC)
architecture

" There are 3 types of operands in x86-64
- Immediate, Register, Memory

" There are 3 types of instructions in x86-64
- Data transfer, Arithmetic, Control Flow

27

