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Relevant Course Information

❖ Lab 2 due tonight

❖ Lab 3 released next Monday (10/31)

▪ A shorter lab, due Friday, 11/11

❖ hw13 due next Wednesday (11/2)

❖ Take-home Midterm (11/3 – 11/5)

▪ Instructions will be posted on Ed Discussion

▪ Gilligan’s Island Rule: discuss high-level concepts and give 
hints, but not solving the problems together

▪ We will be available on Ed Discussion (private posts only) 
and office hours to answer clarifying questions
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Reading Review

❖ Terminology:

▪ Structs:  tags and fields, and operators

▪ Typedef

▪ Alignment, internal fragmentation, external fragmentation

❖ Questions from the Reading?
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Review Questions

❖ How much space does (in bytes) does an instance of 
take?

❖ Which of the following statements are syntactically 
valid?
▪

▪

▪

▪

4



CSE351, Autumn 2022L14:  Structs & Alignment

Data Structures in C

❖ Arrays

▪ One-dimensional

▪ Multi-dimensional (nested)

▪ Multi-level

❖ Structs

▪ Alignment

❖ Unions
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Structs in C (Review)

❖ A structured group of variables, possibly including 
other structs

▪ Way of defining compound data types

6

struct song {

char* title;

int lengthInSeconds;

int yearReleased;

};

struct song song1;

song1.title = "drivers license";

song1.lengthInSeconds = 242;

song1.yearReleased = 2021;

struct song song2;

song2.title = "Call Me Maybe";

song2.lengthInSeconds = 193;

song2.yearReleased = 2011;

struct song {
char* title;

int lengthInSeconds;

int yearReleased;

};

song1
title: "drivers license"

lengthInSeconds:     242

yearReleased:       2021

song2
title:   "Call Me Maybe"

lengthInSeconds:     193

yearReleased:       2011
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Struct Definitions (Review)

❖ Structure definition:

▪ Does NOT declare a variable

▪ Variable type is “struct name”

❖ Variable declarations like any other data type:

❖ Can also combine struct and instance definitions:

▪ This syntax can be difficult to read, though

struct name name1, *pn, name_ar[3];

pointer arrayinstance

struct name {

/* fields */

} st, *p = &st;

struct name {

/* fields */ 

};

Easy to forget 
semicolon!
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Typedef in C (Review)

❖ A way to create an alias for another data type:
typedef <data type> <alias>;

▪ After typedef, the alias can be used interchangeably with 
the original data type

▪ e.g., typedef unsigned long int uli;

❖ Joint struct definition and typedef

▪ Don’t need to give struct a name in this case
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typedef struct {

/* fields */

} name;

name n1;

struct nm {

/* fields */

};

typedef struct nm name;

name n1;
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Scope of Struct Definition (Review)

❖ Why is the placement of struct definition important?

▪ Declaring a variable creates space for it somewhere

▪ Without definition, program doesn’t know how much space

❖ Almost always define structs in global scope near the 
top of your C file

▪ Struct definitions follow normal rules of scope
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struct data {

int ar[4];

long d;

};

Size = 24 bytes struct rec {

int a[4];

long i;

struct rec* next;

};Size = 32 bytes
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Accessing Structure Members (Review)

❖ Given a struct instance, access 
member using the . operator:

struct rec r1;

r1.i = val;

❖ Given a pointer to a struct:   
struct rec* r;

r = &r1;  // or malloc space for r to point to

We have two options:

• Use  * and  . operators: (*r).i = val;

• Use  -> operator (shorter):        r->i = val;

❖ In assembly: register holds address of the first byte

▪ Access members with offsets
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struct rec {

int a[4];

long i;

struct rec* next;

};
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Java side-note

❖ An instance of a class is like a pointer to a struct 
containing the fields

▪ (Ignoring methods and subclassing for now)

▪ So Java’s  x.f is like C’s  x->f or  (*x).f

❖ In Java, almost everything is a pointer (“reference”) to 
an object

▪ Cannot declare variables or fields that are structs or arrays

▪ Always a pointer to a struct or array

▪ So every Java variable or field is ≤ 8 bytes (but can point to 
lots of data)
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class Record { ... }

Record x = new Record();
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Structure Representation (Review)

❖ Characteristics

▪ Contiguously-allocated region of memory

▪ Refer to members within structure by names

▪ Fields may be of different types
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a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;
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Structure Representation (Review)

❖ Structure represented as block of memory

▪ Big enough to hold all of the fields

❖ Fields ordered according to declaration order

▪ Even if another ordering would be more compact

❖ Compiler determines overall size + positions of fields

▪ Machine-level program has no understanding of the 
structures in the source code 
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struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

a

r

i next

0 16 24 32
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# r in %rdi

movq 16(%rdi), %rax

ret

long get_i(struct rec* r) {

return r->i;

}

Accessing a Structure Member

❖ Compiler knows the offset of each member
▪ No pointer arithmetic; compute as *(r+offset)
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r->i

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

int get_a3(struct rec* r) {

return r->a[3];

}

# r in %rdi

movl 12(%rdi), %eax

ret
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# r in %rdi

leaq 16(%rdi), %rax

ret

Pointer to Structure Member
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# r in %rdi

leaq 24(%rdi), %rax

ret

long* addr_of_i(struct rec* r)

{

return &(r->i);

}

struct rec** addr_of_next(struct rec* r)

{

return &(r->next);

}

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

a

r

i next

0 16 24 32
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# r in %rdi, index in %rsi

leaq (%rdi,%rsi,4), %rax

ret

int* find_addr_of_array_elem

(struct rec* r, long index)

{

return &r->a[index];

}

Generating Pointer to Array Element

❖ Generating Pointer to 
Array Element

▪ Offset of each structure 
member determined at 
compile time

▪ Compute as:  
r+4*index
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r+4*index

&(r->a[index])

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

a

r

i next

0 16 24 32
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Struct Pointers

❖ Pointers store addresses, which all “look” the same

▪ Lab 0 Example:  struct instance could be treated as 
array of s of size 4 via pointer casting

▪ A struct pointer doesn’t have to point to a declared instance 
of that struct type

❖ Different struct fields may or may not be meaningful, 
depending on what the pointer points to

▪ This will be important for Lab 5!
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long get_a3(struct rec* r) {

return r->a[3];

}

movl 12(%rdi), %rax

ret
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Alignment Principles

❖ Aligned Data

▪ Primitive data type requires 𝐾 bytes

▪ Address must be multiple of 𝐾

▪ Required on some machines; advised on x86-64

❖ Motivation for Aligning Data

▪ Memory accessed by (aligned) chunks of bytes 
(width is system dependent)
• Inefficient to load or store value that spans quad word boundaries

• Virtual memory trickier when value spans 2 pages (more on this later)

▪ Though x86-64 hardware will work regardless of alignment of 
data
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Memory Alignment in x86-64

❖ Aligned means that any primitive object of 𝐾 bytes 
must have an address that is a multiple of 𝐾

❖ Aligned addresses for data types:

19

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002
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Structures & Alignment (Review)

❖ Unaligned Data

❖ Aligned Data

▪ Primitive data type requires 𝐾 bytes

▪ Address must be multiple of 𝐾
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c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {

char c;

int i[2];

double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8
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Satisfying Alignment with Structures (1)

❖ Within structure:
▪ Must satisfy each element’s alignment requirement

❖ Overall structure placement
▪ Each structure has alignment requirement 𝐾max

• 𝐾max = Largest alignment of any element

• Counts array elements individually as elements

❖ Example:
▪ 𝐾max = 8, due to double element
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struct S1 {

char c;

int i[2];

double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation
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Satisfying Alignment with Structures (2)

❖ Can find offset of individual fields 
using offsetof()
▪ Need to #include <stddef.h>

▪ Example:  offsetof(struct S2,c) returns 16

❖ For largest alignment requirement 𝐾max,
overall structure size must be multiple of 𝐾max
▪ Compiler will add padding at end of 

structure to meet overall structure 
alignment requirement
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v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {

double v;

int i[2];

char c;

} st, *p = &st;

Multiple of 8Multiple of 8
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Arrays of Structures

❖ Overall structure length multiple of 𝐾𝑚𝑎𝑥
❖ Satisfy alignment requirement 

for every element in array
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a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {

double v;

int i[2];

char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation
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Alignment of Structs (Review)

❖ Compiler will do the following:

▪ Maintains declared ordering of fields in struct

▪ Each field must be aligned within the struct
(may insert padding)
• offsetof can be used to get actual field offset

▪ Overall struct must be aligned according to largest field

▪ Total struct size must be multiple of its alignment 
(may insert padding)
• sizeof should be used to get true size of structs
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How the Programmer Can Save Space

❖ Compiler must respect order elements are declared in

▪ Sometimes the programmer can save space by declaring 
large data types first
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struct S4 {

char c;

int i;

char d;

} st;

struct S5 {

int i;

char c;

char d;

} st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes
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Practice Question

❖ Minimize the size of the struct by re-ordering the vars

❖ What is the new size of the struct?
sizeof(struct old) = 32 B sizeof(struct new) = _____

A. 22 bytes

B. 24 bytes

C. 28 bytes

D. 32 bytes

E. We’re lost…
26

struct old {

int i;

short s[3];

char* c;

float f;

};

struct new {

int i;

______ ______;

______ ______;

______ ______;

};
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Summary

❖ Arrays in C

▪ Aligned to satisfy every element’s alignment requirement

❖ Structures

▪ Allocate bytes for fields in order declared by programmer

▪ Pad in middle to satisfy individual element alignment 
requirements

▪ Pad at end to satisfy overall struct alignment requirement
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