
CSE351, Autumn 2022L14: Structs & Alignment

Structs & Alignment
CSE 351 Autumn 2022

Instructor: Teaching Assistants:
Justin Hsia Angela Xu Arjun Narendra Armin Magness

Assaf Vayner Carrie Hu Clare Edmonds
David Dai Dominick Ta Effie Zheng
James Froelich Jenny Peng Kristina Lansang
Paul Stevans Renee Ruan Vincent Xiao

http://xkcd.com/804/

http://xkcd.com/804/

CSE351, Autumn 2022L14: Structs & Alignment

Relevant Course Information

❖ Lab 2 due tonight

❖ Lab 3 released next Monday (10/31)

▪ A shorter lab, due Friday, 11/11

❖ hw13 due next Wednesday (11/2)

❖ Take-home Midterm (11/3 – 11/5)

▪ Instructions will be posted on Ed Discussion

▪ Gilligan’s Island Rule: discuss high-level concepts and give
hints, but not solving the problems together

▪ We will be available on Ed Discussion (private posts only)
and office hours to answer clarifying questions

2

CSE351, Autumn 2022L14: Structs & Alignment

Reading Review

❖ Terminology:

▪ Structs: tags and fields, and operators

▪ Typedef

▪ Alignment, internal fragmentation, external fragmentation

❖ Questions from the Reading?

3

CSE351, Autumn 2022L14: Structs & Alignment

Review Questions

❖ How much space does (in bytes) does an instance of
take?

❖ Which of the following statements are syntactically
valid?
▪

▪

▪

▪

4

CSE351, Autumn 2022L14: Structs & Alignment

Data Structures in C

❖ Arrays

▪ One-dimensional

▪ Multi-dimensional (nested)

▪ Multi-level

❖ Structs

▪ Alignment

❖ Unions

5

CSE351, Autumn 2022L14: Structs & Alignment

Structs in C (Review)

❖ A structured group of variables, possibly including
other structs

▪ Way of defining compound data types

6

struct song {

char* title;

int lengthInSeconds;

int yearReleased;

};

struct song song1;

song1.title = "drivers license";

song1.lengthInSeconds = 242;

song1.yearReleased = 2021;

struct song song2;

song2.title = "Call Me Maybe";

song2.lengthInSeconds = 193;

song2.yearReleased = 2011;

struct song {
char* title;

int lengthInSeconds;

int yearReleased;

};

song1
title: "drivers license"

lengthInSeconds: 242

yearReleased: 2021

song2
title: "Call Me Maybe"

lengthInSeconds: 193

yearReleased: 2011

CSE351, Autumn 2022L14: Structs & Alignment

Struct Definitions (Review)

❖ Structure definition:

▪ Does NOT declare a variable

▪ Variable type is “struct name”

❖ Variable declarations like any other data type:

❖ Can also combine struct and instance definitions:

▪ This syntax can be difficult to read, though

struct name name1, *pn, name_ar[3];

pointer arrayinstance

struct name {

/* fields */

} st, *p = &st;

struct name {

/* fields */

};

Easy to forget
semicolon!

7

CSE351, Autumn 2022L14: Structs & Alignment

Typedef in C (Review)

❖ A way to create an alias for another data type:
typedef <data type> <alias>;

▪ After typedef, the alias can be used interchangeably with
the original data type

▪ e.g., typedef unsigned long int uli;

❖ Joint struct definition and typedef

▪ Don’t need to give struct a name in this case

8

typedef struct {

/* fields */

} name;

name n1;

struct nm {

/* fields */

};

typedef struct nm name;

name n1;

CSE351, Autumn 2022L14: Structs & Alignment

Scope of Struct Definition (Review)

❖ Why is the placement of struct definition important?

▪ Declaring a variable creates space for it somewhere

▪ Without definition, program doesn’t know how much space

❖ Almost always define structs in global scope near the
top of your C file

▪ Struct definitions follow normal rules of scope

9

struct data {

int ar[4];

long d;

};

Size = 24 bytes struct rec {

int a[4];

long i;

struct rec* next;

};Size = 32 bytes

CSE351, Autumn 2022L14: Structs & Alignment

Accessing Structure Members (Review)

❖ Given a struct instance, access
member using the . operator:

struct rec r1;

r1.i = val;

❖ Given a pointer to a struct:
struct rec* r;

r = &r1; // or malloc space for r to point to

We have two options:

• Use * and . operators: (*r).i = val;

• Use -> operator (shorter): r->i = val;

❖ In assembly: register holds address of the first byte

▪ Access members with offsets

10

struct rec {

int a[4];

long i;

struct rec* next;

};

CSE351, Autumn 2022L14: Structs & Alignment

Java side-note

❖ An instance of a class is like a pointer to a struct
containing the fields

▪ (Ignoring methods and subclassing for now)

▪ So Java’s x.f is like C’s x->f or (*x).f

❖ In Java, almost everything is a pointer (“reference”) to
an object

▪ Cannot declare variables or fields that are structs or arrays

▪ Always a pointer to a struct or array

▪ So every Java variable or field is ≤ 8 bytes (but can point to
lots of data)

11

class Record { ... }

Record x = new Record();

CSE351, Autumn 2022L14: Structs & Alignment

Structure Representation (Review)

❖ Characteristics

▪ Contiguously-allocated region of memory

▪ Refer to members within structure by names

▪ Fields may be of different types

12

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

CSE351, Autumn 2022L14: Structs & Alignment

Structure Representation (Review)

❖ Structure represented as block of memory

▪ Big enough to hold all of the fields

❖ Fields ordered according to declaration order

▪ Even if another ordering would be more compact

❖ Compiler determines overall size + positions of fields

▪ Machine-level program has no understanding of the
structures in the source code

13

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

a

r

i next

0 16 24 32

CSE351, Autumn 2022L14: Structs & Alignment

r in %rdi

movq 16(%rdi), %rax

ret

long get_i(struct rec* r) {

return r->i;

}

Accessing a Structure Member

❖ Compiler knows the offset of each member
▪ No pointer arithmetic; compute as *(r+offset)

14

r->i

a

r

i next

0 16 24 32

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

int get_a3(struct rec* r) {

return r->a[3];

}

r in %rdi

movl 12(%rdi), %eax

ret

CSE351, Autumn 2022L14: Structs & Alignment

r in %rdi

leaq 16(%rdi), %rax

ret

Pointer to Structure Member

15

r in %rdi

leaq 24(%rdi), %rax

ret

long* addr_of_i(struct rec* r)

{

return &(r->i);

}

struct rec** addr_of_next(struct rec* r)

{

return &(r->next);

}

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

a

r

i next

0 16 24 32

CSE351, Autumn 2022L14: Structs & Alignment

r in %rdi, index in %rsi

leaq (%rdi,%rsi,4), %rax

ret

int* find_addr_of_array_elem

(struct rec* r, long index)

{

return &r->a[index];

}

Generating Pointer to Array Element

❖ Generating Pointer to
Array Element

▪ Offset of each structure
member determined at
compile time

▪ Compute as:
r+4*index

16

r+4*index

&(r->a[index])

struct rec {

int a[4];

long i;

struct rec* next;

} st, *r = &st;

a

r

i next

0 16 24 32

CSE351, Autumn 2022L14: Structs & Alignment

Struct Pointers

❖ Pointers store addresses, which all “look” the same

▪ Lab 0 Example: struct instance could be treated as
array of s of size 4 via pointer casting

▪ A struct pointer doesn’t have to point to a declared instance
of that struct type

❖ Different struct fields may or may not be meaningful,
depending on what the pointer points to

▪ This will be important for Lab 5!

17

long get_a3(struct rec* r) {

return r->a[3];

}

movl 12(%rdi), %rax

ret

CSE351, Autumn 2022L14: Structs & Alignment

Alignment Principles

❖ Aligned Data

▪ Primitive data type requires 𝐾 bytes

▪ Address must be multiple of 𝐾

▪ Required on some machines; advised on x86-64

❖ Motivation for Aligning Data

▪ Memory accessed by (aligned) chunks of bytes
(width is system dependent)
• Inefficient to load or store value that spans quad word boundaries

• Virtual memory trickier when value spans 2 pages (more on this later)

▪ Though x86-64 hardware will work regardless of alignment of
data

18

CSE351, Autumn 2022L14: Structs & Alignment

Memory Alignment in x86-64

❖ Aligned means that any primitive object of 𝐾 bytes
must have an address that is a multiple of 𝐾

❖ Aligned addresses for data types:

19

𝐾 Type Addresses

1 char No restrictions

2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

16 long double Lowest 4 bits zero: …00002

CSE351, Autumn 2022L14: Structs & Alignment

Structures & Alignment (Review)

❖ Unaligned Data

❖ Aligned Data

▪ Primitive data type requires 𝐾 bytes

▪ Address must be multiple of 𝐾

20

c i[0] i[1] v

p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {

char c;

int i[2];

double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351, Autumn 2022L14: Structs & Alignment

Satisfying Alignment with Structures (1)

❖ Within structure:
▪ Must satisfy each element’s alignment requirement

❖ Overall structure placement
▪ Each structure has alignment requirement 𝐾max

• 𝐾max = Largest alignment of any element

• Counts array elements individually as elements

❖ Example:
▪ 𝐾max = 8, due to double element

21

struct S1 {

char c;

int i[2];

double v;

} st, *p = &st;

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

CSE351, Autumn 2022L14: Structs & Alignment

Satisfying Alignment with Structures (2)

❖ Can find offset of individual fields
using offsetof()
▪ Need to #include <stddef.h>

▪ Example: offsetof(struct S2,c) returns 16

❖ For largest alignment requirement 𝐾max,
overall structure size must be multiple of 𝐾max
▪ Compiler will add padding at end of

structure to meet overall structure
alignment requirement

22

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

external fragmentation

struct S2 {

double v;

int i[2];

char c;

} st, *p = &st;

Multiple of 8Multiple of 8

CSE351, Autumn 2022L14: Structs & Alignment

Arrays of Structures

❖ Overall structure length multiple of 𝐾𝑚𝑎𝑥
❖ Satisfy alignment requirement

for every element in array

23

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {

double v;

int i[2];

char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

external fragmentation

CSE351, Autumn 2022L14: Structs & Alignment

Alignment of Structs (Review)

❖ Compiler will do the following:

▪ Maintains declared ordering of fields in struct

▪ Each field must be aligned within the struct
(may insert padding)
• offsetof can be used to get actual field offset

▪ Overall struct must be aligned according to largest field

▪ Total struct size must be multiple of its alignment
(may insert padding)
• sizeof should be used to get true size of structs

24

CSE351, Autumn 2022L14: Structs & Alignment

How the Programmer Can Save Space

❖ Compiler must respect order elements are declared in

▪ Sometimes the programmer can save space by declaring
large data types first

25

struct S4 {

char c;

int i;

char d;

} st;

struct S5 {

int i;

char c;

char d;

} st;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351, Autumn 2022L14: Structs & Alignment

Practice Question

❖ Minimize the size of the struct by re-ordering the vars

❖ What is the new size of the struct?
sizeof(struct old) = 32 B sizeof(struct new) = _____

A. 22 bytes

B. 24 bytes

C. 28 bytes

D. 32 bytes

E. We’re lost…
26

struct old {

int i;

short s[3];

char* c;

float f;

};

struct new {

int i;

______ ______;

______ ______;

______ ______;

};

CSE351, Autumn 2022L14: Structs & Alignment

Summary

❖ Arrays in C

▪ Aligned to satisfy every element’s alignment requirement

❖ Structures

▪ Allocate bytes for fields in order declared by programmer

▪ Pad in middle to satisfy individual element alignment
requirements

▪ Pad at end to satisfy overall struct alignment requirement

27

