YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Memory & Caches IV

CSE 351 Autumn 2022

Instructor: Teaching Assistants:
Justin Hsia Angela Xu Arjun Narendra Armin Magness
Assaf Vayner Carrie Hu Clare Edmonds
David Dai Dominick Ta Effie Zheng
James Froelich Jenny Peng Kristina Lansang
Paul Stevans Renee Ruan Vincent Xiao
REFRESH TYPE EXAMPLE SHORTCUTS EFFECT

SOFT REFRESH ~ GMAIL [REFRESH] BUTION | REQUESTS UPDATE WITHIN JAVASCRIPT
NORMAL REFRESH F5, CTRER, 3R REFRESHES PAGE

HARD REFRESH CTRLFS, TR}, 3R REFRESHES PAGE INCLUDING CACHED FILES

5)< HARDER REFRESH CTRL-{}-HYPER-ESC-R-F5 = REMOTELY (YCLES POLER To DATACENTER

€ K HARDEST REFRESH | (1e'0 -5 & s x| INTERNET STARTS OVER PROM ARPPNET

http://xkcd.com/1854/

http://xkcd.com/1854/

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Relevant Course Information

+» Lab 4 released today, due Monday, Nov. 28

" Cache parameter puzzles and code optimizations

» hw17 due Wed (11/16), hw19 due Fri (11/18)

"= |lab 4 preparation

+» Midterm scores posted
= See Ed post for common misconceptions
= Regrade requests open from Nov. 15-17 (Tue-Thu)

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Growth vs. Fixed Mindset | B

% Students can be thought of as having either a
“growth” mindset or a “fixed” mindset (based on
research by Prof. Carol Dweck)

" “In a fixed mindset students believe their basic abilities,
their intelligence, their talents, are just fixed traits. They
have a certain amount and that's that, and then their goal
becomes to look smart all the time and never look dumb.”

" “In a growth mindset students understand that their talents
and abilities can be developed through effort, good teaching
and persistence. They don't necessarily think everyone's the
same or anyone can be Einstein, but they believe everyone
can get smarter if they work at it.”

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Reading Review

+» Terminology:
= Write-hit policies: write-back, write-through
= Write-miss policies: write allocate, no-write allocate
" Cache blocking

% Questions from the Reading?

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

What about writes? (Review)

‘0

Multiple copies of data may exist:

= multiple levels of cache and main memory
What to do on a write-hit? (bls/ddu alvesdy n $)

= Write-through: write immediately to next level

‘0

= Write-back: defer write to next level until line is evicted (replaced)

- Must track which cache lines have been modified (“dirty bit”)“&f::f\.\/ %ajtfa:_;k

. . _ Coch&
What to do on a write-miss? (bock /ddra ot currently in $)
= Write allocate: (“fetch on write”) load into cache, then execute the
write-hit policy
- Good if more writes or reads to the location follow

= No-write allocate: (“write around”) just write immediately to next level

‘0

Typical caches:

(Write-back + Write allocate, usually <X

= Write-through + No-write allocate, occasionally

@,
*

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Write-back, Write Allocate Example

Note: We are making some unrealistic simplifications to keep this
example simple and focus on the cache policies

irty Tag Block Contents

Cache: 1| [o] | G (OxBEEF)
4

There is only one set in this tiny cache,

so the tag is the entire block number! nst dirty, soO
these copies
Block . dre con sistent
Memory: Num :
F OxCAFE

G (OxBEEF >

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Write-back, Write Allocate Example

Not v3lid x86, assume we mean an address

1) mov $OXFACE, (F) /~ assodiated with this block num
Write Miss

Valid Dirty Tag Block Contents
E 5x§ ACE

Cache: 1] [o]] & O@E/E‘”{i

@&1::’ Step 1: Bring F into
cache
Block X
Memory: Num :
F OxCAFE

G O0xBEEF

YA UNIVERSITY of WASHINGTON

L19: Caches IV

CSES351, Autumn 2022

Write-back, Write Allocate Example

1) mov S$SOxFACE, (F)
Write Miss

Valid Dirty Tag

@ write data
into block

Block Contents

1

OXEACE]

Cache: 1| [o] | F

0xCAFE

Block
Memory: Num

dfﬁerer\—" _’

/

g

OxBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit

YA UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Autumn 2022

Write-back, Write Allocate Example

1) mov S$SOxXFACE, (F)

Write Miss
Valid Dirty Tag Block Contents
Cache: 1] |1 F OxFACE
Block X
Memory: Num :
F OxCAFE
G OxBEEF

Step 1: Bring F into
cache

Step 2: Write
OxFACE to cache
only and set the
dirty bit

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Write-back, Write Allocate Example

1) mov SOxFACE, (
Write Miss

2)mov SOxFEED, (F)

Write Hit write ddfa
,‘n+b b‘od(

Valid Dirty Tag Block Contents
OxFE

Cache: 1| | & F OXEREE

Step: Write
OxFEED to cache

only (and set the

Block . dirty bit)
Memory: Num .
F 0xCAFE

G O0xBEEF

10

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Write-back, Write Allocate Example

1) mov SOXFACE, (F) 2)mov S$SOxXFEED, (F)

Write Miss Write Hit
Valid Dirty Tag Block Contents
Cache: 1] |1 F OXFEED
Block X
Memory: Num :
F OxCAFE

G O0xBEEF

11

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Write-back, Write Allocate Example

1) mov SOxXFACE, (F) 2)mov S$SOxFEED, (F) 3)mov (G), %ax

Write Miss Write Hit Read Miss
Valid Dirty Tag Block Contents
Cache: 1] (D F OXFEED

/[

‘bj“jj*g?rﬁ’f;“k Step 1: Write F back
to memory since it
is dirty

Block X
Memory: Num k} s O(JEED
F 0xCATE

G O0xBEEF

12

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Povrox [)

Write-back, Write Allocate Example

1) mov SOxFACE, (F) 2)mov S$OXFEED, (F 3)mov (G), %ax

Write Miss Write Hit Read Miss
@ CD(J\/ M‘b
Valid Dirty Tag Block Contents % ax
4
Cache: 11]0]]| G (OXBEEF
7‘_ N
new Buck is
on {‘\' AT H’h .
Cms;\:yb @'\j\:‘i""“ Step 1: Write F back
to memory since it
is dirty
Block :
Memory: Num : Step 2: Bring G into
F OXFEED the cache so that

we can copy it into
Zax

13

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache Simulator

+» Want to play around with cache parameters and
policies? Check out our cache simulator!

" https://courses.cs.washington.edu/courses/cse351/cachesim/

+» Way to use:

= Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions
= Self-guided Cache Sim Demo posted along with Section 7

= Will be used in HW19 — Lab 4 Preparation

14

https://courses.cs.washington.edu/courses/cse351/cachesim/

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Polling Question

« Which of the following cache statements is FALSE?
= Vote in Ed Lessons

i A.! We can reduce colmpuulsory n?isifﬂs by decr$easing
. ~ blo 1 v s
our block size Smler ©ode sz brtes
On G mMass
B. We can reduce conflict misses by increasing

i Vi ’I’\-r\ _,b \OQ’\CDY
associativity '“°‘;fv_c‘3r\fo:gf Cchlﬁce oks before
W o v

C. A write-back cache will save time for code with

. . ’Frec(uen‘{'l ~wsed blocks rarel
good temporal locality on writes . s, U fon orfebels 4

D. A write-through cache will always match data)r
with the memory hierarchy level below it " "~y

5 Adda
E. We’re lost...

Y/
COAsIs‘I‘ency

15

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Optimizations for the Memory Hierarchy

+» Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" |oop transformations

16

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Example: Matrix Multiplication

D-
*

h.

17

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Matrices in Memory

+» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

18

CSE351, Autumn 2022

YA UNIVERSITY of WASHINGTON L19: Caches IV

Naive Matrix Multiply

move along rows of A
for (i = 0; 1 < n; 1i++)
move along columns of B
for (J = 0; 73 < n; J++)
EACH k loop reads row of A, col of B
Also read & write C(i,j) n times

for (k = 0; k < n; k++) dk mee
CIi][3] GO ALil[k] * BLkI[F]; acen potient
DA (453 @ Read © Read ©>Read
(i) c(i,j) Ali;)
O] — O] 4+ 1 X B(:,j)

19

YA UNIVERSITY of WASHINGTON

L19: Caches IV

Cache Miss Analysis (Naive)

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles

CSE351, Autumn 2022

lgnoring
matrix C

" Cache blocksize K=64B =8 doubles 4—)8 mate elemeny per

ﬁ Cache size i

s much smaller than n

key asmm,rf ion!

« Each iteration:
A B

n .
" — 4+ N =—misses
8 8

on

(ow\rav\\so’fy /ﬁ
J

5(>a:Ho\l (oce \nl\/

MHHKHHHHH

epP g),‘\lll

S‘(‘YT(}\C' l

A
1234

5 —

CGC\'\G loloC\’\

|
2
1
11

X

by FheHime e g

|, Hod hw been
\<1‘¢‘(€A O\K} (SF j;

20

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache Miss Analysis (Naive) ['gno””g]

matrix C

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
" Cache blocksize K =64 B =8 doubles

® Cache size is much smaller than n

« Each iteration:
n on . — X
" —4+n =—misses
8 8
= Afterwards in cache:
(schematic) = X
red sLow\'\ﬁ
Ko rewol\\f\“wj

A the f\> 8 doubles wide)1

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache Miss Analysis (Naive)

lgnoring
matrix C

]

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache blocksize K =64 B =8 doubles

® Cache size is much smaller than n

« Each iteration:

1
X

n In)
" — 4+ N =—misses
8 8

. 9n (’9 }
+ Total misses: - X n{\z §n3

once per product matrix element

22

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+» Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

AI\ ___ A\L
—_— - = \ '__ —_— - -)
A1 Gz iy G4
a a,, a a4 A A . . L
A= R 2 =4 =" 12], with B defined similarly.
31 ~ U3y U3z d3g. A,y Ay,

Qg1 Qup ' Qg3 Qg
a B A,

(AllBll +A12821) (A11812 + AlEBEE)
(A21511 +A22521) (A21512 + AZEBZE)

AB=[

23

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

material

C11 i , C13 C14 A11 i A | A13 | A14 B11 BlZ B13 B14

Cy; lczzl C23§024 ZA215/<\5§ @/ \
A?,zI

Aoy
Cs; C32 i C43 Cas A34

B24

B21 B23
B, @ B33 B,

C C42 Cus C44 Ay | A42 A4:-3. §A144 B | [E é\ B43 B,y

Matrices of size n X n, split into 4 blocks of size r (n=4r)

C,, =A, B, +A,B,, + AyBy, +A,B,, = 2 A B,

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called [“cache blocking’\ vt

24

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Blocked Matrix Multiply L petted 0 .

5
AN S S

]fs) ¢ (Qo\C’
. . . faster
+ Blocked version of the naive algorithm: + s

move by rxr BLOCKS now
for (1 = 0; 1 < n; 1 += r)
for (j = 0; § < n; j += 1) loop over blode
for (k = 0; k < n; k += r) _J mactrice s
block matrix multiplication
for (ib = 1i; ib < i+r; 1b++)
lodp within for (jb = J; jb < j+r; jb++)
blogc madtrices
for (kb = k; kb < k+r; kb++)
Clib] [Jb] += A[ib] [kb] * Bl[kb][jb];

" r = block matrix size (assume r divides n evenly)

25

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache Miss Analysis (Blocked) ['gno””g]

matrix C

+» Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
= Cache size is much smaller than n
" Three blocks (r X r) fit into cache: 3r? < cache size

5 n/r blocks
wements per bI%k,ES per cache blmf A

/ : .
R Eacf)/block iteration: M EREEN Den e
H“"h\e ZN’
= 2 /8 misses per block — X [l G
" 2n/r X r?/8 = nr/4 e

n/r blocks in row and column

26

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

matrix C

Cache Miss Analysis (Blocked) ['gno””g]

+» Scenario Parameters:
= Cache block size K = 64 B = 8 doubles
= Cache size is much smaller than n
= Three blocks M (r X r) fit into cache: 372 < cache size

rZ elements per block, 8 per cache block n/erlOCks

'd N\
kX Eacf)/b/lock iteration: M HEERR

= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

= Afterwards incache M EEEEN
(schematic)

X

1
X

27

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache Miss Analysis (Blocked) ['gno””g]

matrix C

« Scenario Parameters:
® Cache block size K =64 B = 8 doubles
® Cache size is much smaller than n

= Three blocks M (r X r) fit into cache: 372 < cache size

rZ elements per block, 8 per cache block n/erlOCks

'd N\
kX Eacf)/b/lock iteration: M HEERR

= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

X

<+ Total misses:
" nr/4 X (n/r)? =n3/(4r) w /2

28

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Matrix Multiply Visualization

+» Heren =100, C =32 KiB, r =30
Naive:

I oo

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

29

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.

" Can get most of the advantage with generic coding rJe?

- Keep working set reasonably small (temporal locality)
- Use small strides (spatial locality)
« Focus on inner loop code

30

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache Motivation, Revisited

+» Memory accesses are expensive!

" Massive speedups to processors without similar speedups in
memory only made the problem worse

= “Processor-Memory Bottleneck”:

/
/

10
MSWW
o
1 48 M
1980 1985 1990 1995 2000

2005 2010

Performance

+» We defined “locality”, based on observations about
existing programs, written by an extremely small
subset of the population
" We built hardware that utilizes locality to improve
performance (e.g., AMAT)

31

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Cache “Conclusions”

+ All systems favor “cache-friendly code”

" Can get most of the advantage with generic coding rules

2 A We implicitly made value judgments about
“good” and “bad” code

= “Good” code exhibits “good” locality

" “Good” code might be considered the (desired) common
case

32

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Common Case Optimizations

% Optimizing for the common case is a classic (arguably
foundational) CS technique!

" e.g., algorithms analysis often uses worse case or average
case performance

= e.g., caches optimize for an average program (“most
programs”) that exhibits locality

+» Natural conclusion is to make the common case as
performant as possible at the expense of edge-cases

" Generally, bigger performance impact with common case
than edge case optimizations

" What’s the danger here?

33

YA UNIVERSITY of WASHINGTON L19: Caches IV

CSE351, Autumn 2022

The Common Case and Normativity

+» “Normativity is the phenomenon in human societies
of designating some actions or outcomes as good or
desirable or permissible and others as bad or
undesirable or impermissible.”

" https://en.wikipedia.org/wiki/Normativity

Norms are what are considered “usual” or “expected”

" These often get conflated with the common case:

norm gets “common case” treatment, abnormal gets “edge
case” treatment

= Who determines the norms?

34

https://en.wikipedia.org/wiki/Normativity

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Example: TSA Body Scanners

» TSA used machine learning to determine
predictable variation among “average” bodies

" Built two models: one for “men” and one for “women”

+» TSA agent chooses model to use based on how the
traveler is presenting: 1

Scan

(#
Sc:

o=l

» Who are the “edge cases?” 1< 4
» What is the “edge case performance?” |

35

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Autumn 2022

Designh Considerations

+» Make sure you account for non-normative cases

" |s this (change to) edge-case behavior okay/acceptable?

+ Be careful of implicit normative assumptions

" Can erase people’s experiences and diversity, even
labeling/categorizing them as threats

" Caches aren’t neutral, either — they assume that the
underlying data doesn’t change

- Changes can come from above (the CPU), but not from below

- e.g., changing your name in Google Drive “breaks” the browser cache

% Discuss: Where else do you see normative
assumptions made in tech or CS?

36

